A number is said to be megaPrime if it is prime, and all its digits are also prime.
Example:
53 is megaPrime, but 35 is not as it is divisible by 5 and 7. 13 is not a megaPrime number as it contains 1, which is non-prime.
#INPUT
INPUT
Two integer numbers, first and last are entered.
#OUTPUT
OUTPUT
Display the number of megaPrimes in the inteval between first and last, both inclusive.
#CONSTRAINTS
CONSTRAINTS
1 <= first <= last <= 10^15
last - first <= 10^9
/* PROGRAM TO FIND MEGA PRIME NUMBERS BETWEEN TWO GIVEN INTEGERS */
#include<stdio.h>
int isPrime(int);
int isMegaPrime(int);
int main(void)
{
int i=0,st,sp,count=0;
scanf("%d%d",&st,&sp);
for(i=st;i<=sp;i++){
if((i%2)!=0 && isMegaPrime(i)==1)
count++;
}
printf("%d",count);
return 0;
}
int isPrime(int n)
{
int i=0,flag=0;
if(n==1)
return 0;
else
{
int t=sqrt(n);
for(i=2;i<=t;i++){
if((n%i)==0){
flag=1;
break;
}
}
}
if(flag==1)
return 0;
else
return 1;
}
int isMegaPrime( int n)
{
int i=0,flag=0,temp=0;
if(isPrime(n)==0)
return 0;
else{
while (n!=0){
temp=n%10;
flag=isPrime(temp);
if(flag==0)
return 0;
n/=10;
}
}
if(flag==1)
return 1;
else
return 0;
}
Please suggest the possible optimizations.
A number is said to be megaPrime if it is prime, and all its digits are also prime.
Example:
53 is megaPrime, but 35 is not as it is divisible by 5 and 7. 13 is not a megaPrime number as it contains 1, which is non-prime.
#INPUT
Two integer numbers, first and last are entered.
#OUTPUT
Display the number of megaPrimes in the inteval between first and last, both inclusive.
#CONSTRAINTS
1 <= first <= last <= 10^15
last - first <= 10^9
/* PROGRAM TO FIND MEGA PRIME NUMBERS BETWEEN TWO GIVEN INTEGERS */
#include<stdio.h>
int isPrime(int);
int isMegaPrime(int);
int main(void)
{
int i=0,st,sp,count=0;
scanf("%d%d",&st,&sp);
for(i=st;i<=sp;i++){
if((i%2)!=0 && isMegaPrime(i)==1)
count++;
}
printf("%d",count);
return 0;
}
int isPrime(int n)
{
int i=0,flag=0;
if(n==1)
return 0;
else
{
int t=sqrt(n);
for(i=2;i<=t;i++){
if((n%i)==0){
flag=1;
break;
}
}
}
if(flag==1)
return 0;
else
return 1;
}
int isMegaPrime( int n)
{
int i=0,flag=0,temp=0;
if(isPrime(n)==0)
return 0;
else{
while (n!=0){
temp=n%10;
flag=isPrime(temp);
if(flag==0)
return 0;
n/=10;
}
}
if(flag==1)
return 1;
else
return 0;
}
Please suggest the possible optimizations.
A number is said to be megaPrime if it is prime, and all its digits are also prime.
Example:
53 is megaPrime, but 35 is not as it is divisible by 5 and 7. 13 is not a megaPrime number as it contains 1, which is non-prime.
INPUT
Two integer numbers, first and last are entered.
OUTPUT
Display the number of megaPrimes in the inteval between first and last, both inclusive.
CONSTRAINTS
1 <= first <= last <= 10^15
last - first <= 10^9
/* PROGRAM TO FIND MEGA PRIME NUMBERS BETWEEN TWO GIVEN INTEGERS */
#include<stdio.h>
int isPrime(int);
int isMegaPrime(int);
int main(void)
{
int i=0,st,sp,count=0;
scanf("%d%d",&st,&sp);
for(i=st;i<=sp;i++){
if((i%2)!=0 && isMegaPrime(i)==1)
count++;
}
printf("%d",count);
return 0;
}
int isPrime(int n)
{
int i=0,flag=0;
if(n==1)
return 0;
else
{
int t=sqrt(n);
for(i=2;i<=t;i++){
if((n%i)==0){
flag=1;
break;
}
}
}
if(flag==1)
return 0;
else
return 1;
}
int isMegaPrime( int n)
{
int i=0,flag=0,temp=0;
if(isPrime(n)==0)
return 0;
else{
while (n!=0){
temp=n%10;
flag=isPrime(temp);
if(flag==0)
return 0;
n/=10;
}
}
if(flag==1)
return 1;
else
return 0;
}
Please suggest the possible optimizations.
Find prime Program to find megaPrime numbers in a range whose digits are all primebetween 2 given integers
A number is said to be megaPrime if it is prime, and all its digits are are also prime.
Example:
53 is megaPrime, but 35 is not as it is divisible by 5 and 7. 13 is not a megaPrime number as it contains 1, which is non-prime.
INPUT
Two integer numbers, first and last are entered.
OUTPUT
Display the number of megaPrimes in the inteval between first and last, both inclusive.
CONSTRAINTS
1 <= first <= last <= 10^15
last - first <= 10^9
Please suggest possible optimizationsExample:
53 is megaPrime, but 35 is not as it is divisible by 5 and 7. 13 is not a megaPrime number as it contains 1, which is non-prime.
#INPUT
Two integer numbers, first and last are entered.
#OUTPUT
Display the number of megaPrimes in the inteval between first and last, both inclusive.
#CONSTRAINTS
1 <= first <= last <= 10^15
last - first <= 10^9
/* PROGRAM TO FIND MEGA PRIME NUMBERS BETWEEN TWO GIVEN INTEGERS */
#include<stdio.h>
int isPrime(int);
int isMegaPrime(int);
int main(void)
{
int i=0,st,sp,count=0;
scanf("%d%d",&st,&sp);
for(i=st;i<=sp;i++){
if((i%2)!=0 && isMegaPrime(i)==1)
count++;
}
printf("%d",count);
return 0;
}
int isPrime(int n)
{
int i=0,flag=0;
if(n==1)
return 0;
else
{
int t=sqrt(n);
for(i=2;i<=t;i++){
if((n%i)==0){
flag=1;
break;
}
}
}
if(flag==1)
return 0;
else
return 1;
}
int isMegaPrime( int n)
{
int i=0,flag=0,temp=0;
if(isPrime(n)==0)
return 0;
else{
while (n!=0){
temp=n%10;
flag=isPrime(temp);
if(flag==0)
return 0;
n/=10;
}
}
if(flag==1)
return 1;
else
return 0;
}
Please suggest the possible optimizations.
Find prime numbers in a range whose digits are all prime
A number is said to be megaPrime if it is prime, and all its digits are also prime.
Example:
53 is megaPrime, but 35 is not as it is divisible by 5 and 7. 13 is not a megaPrime number as it contains 1, which is non-prime.
INPUT
Two integer numbers, first and last are entered.
OUTPUT
Display the number of megaPrimes in the inteval between first and last, both inclusive.
CONSTRAINTS
1 <= first <= last <= 10^15
last - first <= 10^9
Please suggest possible optimizations.
/* PROGRAM TO FIND MEGA PRIME NUMBERS BETWEEN TWO GIVEN INTEGERS */
#include<stdio.h>
int isPrime(int);
int isMegaPrime(int);
int main(void)
{
int i=0,st,sp,count=0;
scanf("%d%d",&st,&sp);
for(i=st;i<=sp;i++){
if((i%2)!=0 && isMegaPrime(i)==1)
count++;
}
printf("%d",count);
return 0;
}
int isPrime(int n)
{
int i=0,flag=0;
if(n==1)
return 0;
else
{
int t=sqrt(n);
for(i=2;i<=t;i++){
if((n%i)==0){
flag=1;
break;
}
}
}
if(flag==1)
return 0;
else
return 1;
}
int isMegaPrime( int n)
{
int i=0,flag=0,temp=0;
if(isPrime(n)==0)
return 0;
else{
while (n!=0){
temp=n%10;
flag=isPrime(temp);
if(flag==0)
return 0;
n/=10;
}
}
if(flag==1)
return 1;
else
return 0;
}
Program to find megaPrime numbers between 2 given integers
A number is said to be megaPrime if it is prime, and all its digits are also prime.
Example:
53 is megaPrime, but 35 is not as it is divisible by 5 and 7. 13 is not a megaPrime number as it contains 1, which is non-prime.
#INPUT
Two integer numbers, first and last are entered.
#OUTPUT
Display the number of megaPrimes in the inteval between first and last, both inclusive.
#CONSTRAINTS
1 <= first <= last <= 10^15
last - first <= 10^9
/* PROGRAM TO FIND MEGA PRIME NUMBERS BETWEEN TWO GIVEN INTEGERS */
#include<stdio.h>
int isPrime(int);
int isMegaPrime(int);
int main(void)
{
int i=0,st,sp,count=0;
scanf("%d%d",&st,&sp);
for(i=st;i<=sp;i++){
if((i%2)!=0 && isMegaPrime(i)==1)
count++;
}
printf("%d",count);
return 0;
}
int isPrime(int n)
{
int i=0,flag=0;
if(n==1)
return 0;
else
{
int t=sqrt(n);
for(i=2;i<=t;i++){
if((n%i)==0){
flag=1;
break;
}
}
}
if(flag==1)
return 0;
else
return 1;
}
int isMegaPrime( int n)
{
int i=0,flag=0,temp=0;
if(isPrime(n)==0)
return 0;
else{
while (n!=0){
temp=n%10;
flag=isPrime(temp);
if(flag==0)
return 0;
n/=10;
}
}
if(flag==1)
return 1;
else
return 0;
}
Please suggest the possible optimizations.
A number is said to be megaPrime if it is prime, and all its digits are are also prime.
Example:
53 is megaPrime, but 35 is not as it is divisible by 5 and 7. 13 is not a megaPrime number as it contains 1, which is non-prime.
INPUT
Two integer numbers, first and last are entered.
OUTPUT
Display the number of megaPrimes in the inteval between first and last, both inclusive.
CONSTRAINTS
1 <= first <= last <= 10^15
last - first <= 10^9
Example:
53 is megaPrime, but 35 is not as it is divisible by 5 and 7. 13 is not a megaPrime number as it contains 1, which is non-prime.
#INPUT
Two integer numbers, first and last are entered.
#OUTPUT
Display the number of megaPrimes in the inteval between first and last, both inclusivePlease suggest possible optimizations.
#CONSTRAINTS
1 <= first <= last <= 10^15
last - first <= 10^9
/* PROGRAM TO FIND MEGA PRIME NUMBERS BETWEEN TWO GIVEN INTEGERS */
#include<stdio.h>
int isPrime(int);
int isMegaPrime(int);
int main(void)
{
int i=0,st,sp,count=0;
scanf("%d%d",&st,&sp);
for(i=st;i<=sp;i++){
if((i%2)!=0 && isMegaPrime(i)==1)
count++;
}
printf("%d",count);
return 0;
}
int isPrime(int n)
{
int i=0,flag=0;
if(n==1)
return 0;
else
{
int t=sqrt(n);
for(i=2;i<=t;i++){
if((n%i)==0){
flag=1;
break;
}
}
}
if(flag==1)
return 0;
else
return 1;
}
int isMegaPrime( int n)
{
int i=0,flag=0,temp=0;
if(isPrime(n)==0)
return 0;
else{
while (n!=0){
temp=n%10;
flag=isPrime(temp);
if(flag==0)
return 0;
n/=10;
}
}
if(flag==1)
return 1;
else
return 0;
}
Please suggest the possible optimizations.
A number is said to be megaPrime if it is prime, and all its digits are also prime.
Example:
53 is megaPrime, but 35 is not as it is divisible by 5 and 7. 13 is not a megaPrime number as it contains 1, which is non-prime.
#INPUT
Two integer numbers, first and last are entered.
#OUTPUT
Display the number of megaPrimes in the inteval between first and last, both inclusive.
#CONSTRAINTS
1 <= first <= last <= 10^15
last - first <= 10^9
/* PROGRAM TO FIND MEGA PRIME NUMBERS BETWEEN TWO GIVEN INTEGERS */
#include<stdio.h>
int isPrime(int);
int isMegaPrime(int);
int main(void)
{
int i=0,st,sp,count=0;
scanf("%d%d",&st,&sp);
for(i=st;i<=sp;i++){
if((i%2)!=0 && isMegaPrime(i)==1)
count++;
}
printf("%d",count);
return 0;
}
int isPrime(int n)
{
int i=0,flag=0;
if(n==1)
return 0;
else
{
int t=sqrt(n);
for(i=2;i<=t;i++){
if((n%i)==0){
flag=1;
break;
}
}
}
if(flag==1)
return 0;
else
return 1;
}
int isMegaPrime( int n)
{
int i=0,flag=0,temp=0;
if(isPrime(n)==0)
return 0;
else{
while (n!=0){
temp=n%10;
flag=isPrime(temp);
if(flag==0)
return 0;
n/=10;
}
}
if(flag==1)
return 1;
else
return 0;
}
Please suggest the possible optimizations.
A number is said to be megaPrime if it is prime, and all its digits are also prime.
Example:
53 is megaPrime, but 35 is not as it is divisible by 5 and 7. 13 is not a megaPrime number as it contains 1, which is non-prime.
INPUT
Two integer numbers, first and last are entered.
OUTPUT
Display the number of megaPrimes in the inteval between first and last, both inclusive.
CONSTRAINTS
1 <= first <= last <= 10^15
last - first <= 10^9
Please suggest possible optimizations.
/* PROGRAM TO FIND MEGA PRIME NUMBERS BETWEEN TWO GIVEN INTEGERS */
#include<stdio.h>
int isPrime(int);
int isMegaPrime(int);
int main(void)
{
int i=0,st,sp,count=0;
scanf("%d%d",&st,&sp);
for(i=st;i<=sp;i++){
if((i%2)!=0 && isMegaPrime(i)==1)
count++;
}
printf("%d",count);
return 0;
}
int isPrime(int n)
{
int i=0,flag=0;
if(n==1)
return 0;
else
{
int t=sqrt(n);
for(i=2;i<=t;i++){
if((n%i)==0){
flag=1;
break;
}
}
}
if(flag==1)
return 0;
else
return 1;
}
int isMegaPrime( int n)
{
int i=0,flag=0,temp=0;
if(isPrime(n)==0)
return 0;
else{
while (n!=0){
temp=n%10;
flag=isPrime(temp);
if(flag==0)
return 0;
n/=10;
}
}
if(flag==1)
return 1;
else
return 0;
}