the sum of
F(i)
toF(i+9)
is equal toF(i+11) − F(i+1)
— proof:F(i) + F(i+1) + F(i+2) + F(i+3) + F(i+4) + F(i+5) + F(i+6) + F(i+7) + F(i+8) + F(i+9) = F(i+2) + F(i+4) + F(i+6) + F(i+8) + F(i+10) = F(i+2) - F(i+3) + F(i+5) + F(i+6) + F(i+8) + F(i+10) = -F(i+1) + F(i+7) + F(i+8) + F(i+10) = -F(i+1) + F(i+9) + F(i+10) = -F(i+1) + F(i+11)
F(i) + F(i+1) + F(i+2) + F(i+3) + F(i+4) + F(i+5) + F(i+6) + F(i+7) + F(i+8) + F(i+9) = F(i+2) + F(i+4) + F(i+6) + F(i+8) + F(i+10) = F(i+2) - F(i+3) + F(i+5) + F(i+6) + F(i+8) + F(i+10) = -F(i+1) + F(i+7) + F(i+8) + F(i+10) = -F(i+1) + F(i+9) + F(i+10) = -F(i+1) + F(i+11)
F(i+246) mod 10
is equal to(F(i+11) − F(i+1)) mod 10
(discovered by experimentation; no idea how to prove this)
the sum of
F(i)
toF(i+9)
is equal toF(i+11) − F(i+1)
— proof:F(i) + F(i+1) + F(i+2) + F(i+3) + F(i+4) + F(i+5) + F(i+6) + F(i+7) + F(i+8) + F(i+9) = F(i+2) + F(i+4) + F(i+6) + F(i+8) + F(i+10) = F(i+2) - F(i+3) + F(i+5) + F(i+6) + F(i+8) + F(i+10) = -F(i+1) + F(i+7) + F(i+8) + F(i+10) = -F(i+1) + F(i+9) + F(i+10) = -F(i+1) + F(i+11)
F(i+246) mod 10
is equal to(F(i+11) − F(i+1)) mod 10
(discovered by experimentation; no idea how to prove this)
the sum of
F(i)
toF(i+9)
is equal toF(i+11) − F(i+1)
— proof:F(i) + F(i+1) + F(i+2) + F(i+3) + F(i+4) + F(i+5) + F(i+6) + F(i+7) + F(i+8) + F(i+9) = F(i+2) + F(i+4) + F(i+6) + F(i+8) + F(i+10) = F(i+2) - F(i+3) + F(i+5) + F(i+6) + F(i+8) + F(i+10) = -F(i+1) + F(i+7) + F(i+8) + F(i+10) = -F(i+1) + F(i+9) + F(i+10) = -F(i+1) + F(i+11)
F(i+246) mod 10
is equal to(F(i+11) − F(i+1)) mod 10
(discovered by experimentation; no idea how to prove this)
Perl, 78
sub F{$c=shift;$c>1?F($c-2)+F($c-1):$c}$_=<>;$x=F($_+11)-F($_+1);print$x+$x%10
sub F{$c=shift;$c>1?F($c-2)+F($c-1):$c}$_=<>;$x=F($_+11)-F($_+1);print$x+$x%10
This makes use of my observation that
the sum of
F(i)
toF(i+9)
is equal toF(i+11) − F(i+1)
(please comment if you want a— proof):F(i) + F(i+1) + F(i+2) + F(i+3) + F(i+4) + F(i+5) + F(i+6) + F(i+7) + F(i+8) + F(i+9) = F(i+2) + F(i+4) + F(i+6) + F(i+8) + F(i+10) = F(i+2) - F(i+3) + F(i+5) + F(i+6) + F(i+8) + F(i+10) = -F(i+1) + F(i+7) + F(i+8) + F(i+10) = -F(i+1) + F(i+9) + F(i+10) = -F(i+1) + F(i+11)
F(i+246) mod 10
is equal to(F(i+11) − F(i+1)) mod 10
(discovered by experimentation; no idea how to prove this)
Perl, 78
sub F{$c=shift;$c>1?F($c-2)+F($c-1):$c}$_=<>;$x=F($_+11)-F($_+1);print$x+$x%10
This makes use of my observation that
the sum of
F(i)
toF(i+9)
is equal toF(i+11) − F(i+1)
(please comment if you want a proof)F(i+246) mod 10
is equal to(F(i+11) − F(i+1)) mod 10
(discovered by experimentation; no idea how to prove this)
Perl, 78
sub F{$c=shift;$c>1?F($c-2)+F($c-1):$c}$_=<>;$x=F($_+11)-F($_+1);print$x+$x%10
This makes use of my observation that
the sum of
F(i)
toF(i+9)
is equal toF(i+11) − F(i+1)
— proof:F(i) + F(i+1) + F(i+2) + F(i+3) + F(i+4) + F(i+5) + F(i+6) + F(i+7) + F(i+8) + F(i+9) = F(i+2) + F(i+4) + F(i+6) + F(i+8) + F(i+10) = F(i+2) - F(i+3) + F(i+5) + F(i+6) + F(i+8) + F(i+10) = -F(i+1) + F(i+7) + F(i+8) + F(i+10) = -F(i+1) + F(i+9) + F(i+10) = -F(i+1) + F(i+11)
F(i+246) mod 10
is equal to(F(i+11) − F(i+1)) mod 10
(discovered by experimentation; no idea how to prove this)
Perl, 78
sub F{$c=shift;$c>1?F($c-2)+F($c-1):$c}$_=<>;$x=F($_+11)-F($_+1);print$x+$x%10
This makes use of my observation that
the sum of
F(i)
toF(i+9)
is equal toF(i+11) − F(i+1)
(please comment if you want a proof)F(i+246) mod 10
is equal to(F(i+11) − F(i+1)) mod 10
(discovered by experimentation; no idea how to prove this)