Text embeddings API

The Text embeddings API converts textual data into numerical vectors. These vector representations are designed to capture the semantic meaning and context of the words they represent.

Supported Models:

You can get text embeddings by using the following models:

Model name Description Output Dimensions Max sequence length Supported text languages
gemini-embedding-001 State-of-the-art performance across English, multilingual and code tasks. It unifies the previously specialized models like text-embedding-005 and text-multilingual-embedding-002 and achieves better performance in their respective domains. Read our Tech Report for more detail. up to 3072 2048 tokens Supported text languages
text-embedding-005 Specialized in English and code tasks. up to 768 2048 tokens English
text-multilingual-embedding-002 Specialized in multilingual tasks. up to 768 2048 tokens Supported text languages

For superior embedding quality, gemini-embedding-001 is our large model designed to provide the highest performance.

Syntax

curl

PROJECT_ID=PROJECT_ID
REGION=us-central1
MODEL_ID=MODEL_ID
curl-XPOST\
-H"Authorization: Bearer $(gcloudauthprint-access-token)"\
-H"Content-Type: application/json"\
https://${REGION}-aiplatform.googleapis.com/v1/projects/${PROJECT_ID}/locations/${REGION}/publishers/google/models/${MODEL_ID}:predict-d\
'{
 "instances": [
 ...
 ],
 "parameters": {
 ...
 }
 }'

Python

PROJECT_ID = PROJECT_ID
REGION = us-central1
MODEL_ID = MODEL_ID
importvertexai
fromvertexai.language_modelsimport TextEmbeddingModel
vertexai .init(project=PROJECT_ID, location=REGION)
model = TextEmbeddingModel.from_pretrained(MODEL_ID)
embeddings = model.get_embeddings (...)

Parameter list

Top-level fields

instances

A list of objects containing the following fields:

  • content

  • title (optional)

  • task_type (optional)

parameters

An object containing the following fields:

  • autoTruncate (optional)

  • outputDimensionality (optional)

instance fields

content

string

The text that you want to generate embeddings for.

task_type

Optional: string

Used to convey intended downstream application to help the model produce better embeddings. If left blank, the default used is RETRIEVAL_QUERY.

  • RETRIEVAL_QUERY
  • RETRIEVAL_DOCUMENT
  • SEMANTIC_SIMILARITY
  • CLASSIFICATION
  • CLUSTERING
  • QUESTION_ANSWERING
  • FACT_VERIFICATION
  • CODE_RETRIEVAL_QUERY

For more information about task types, see Choose an embeddings task type.

title

Optional: string

Used to help the model produce better embeddings. Only valid with task_type=RETRIEVAL_DOCUMENT.

task_type

The following table describes the task_type parameter values and their use cases:

task_type Description
RETRIEVAL_QUERY Specifies the given text is a query in a search or retrieval setting. Use RETRIEVAL_DOCUMENT for the document side.
RETRIEVAL_DOCUMENT Specifies the given text is a document in a search or retrieval setting.
SEMANTIC_SIMILARITY Specifies the given text is used for Semantic Textual Similarity (STS).
CLASSIFICATION Specifies that the embedding is used for classification.
CLUSTERING Specifies that the embedding is used for clustering.
QUESTION_ANSWERING Specifies that the query embedding is used for answering questions. Use RETRIEVAL_DOCUMENT for the document side.
FACT_VERIFICATION Specifies that the query embedding is used for fact verification. Use RETRIEVAL_DOCUMENT for the document side.
CODE_RETRIEVAL_QUERY Specifies that the query embedding is used for code retrieval for Java and Python. Use RETRIEVAL_DOCUMENT for the document side.

Retrieval Tasks:

Query: Use task_type=RETRIEVAL_QUERY to indicate that the input text is a search query. Corpus: Use task_type=RETRIEVAL_DOCUMENT to indicate that the input text is part of the document collection being searched.

Similarity Tasks:

Semantic similarity: Use task_type= SEMANTIC_SIMILARITY for both input texts to assess their overall meaning similarity.

parameters fields

autoTruncate

Optional: bool

When set to true, input text will be truncated. When set to false, an error is returned if the input text is longer than the maximum length supported by the model. Defaults to true.

outputDimensionality

Optional: int

Used to specify output embedding size. If set, output embeddings will be truncated to the size specified.

Request body

{
"instances":[
{
"task_type":"RETRIEVAL_DOCUMENT",
"title":"document title",
"content":"I would like embeddings for this text!"
},
]
}

Response body

{
"predictions":[
{
"embeddings":{
"statistics":{
"truncated":boolean,
"token_count":integer
},
"values":[number]
}
}
]
}
Response elements

predictions

A list of objects with the following fields:

  • embeddings: The result generated from input text. Contains the following fields:

    • values

    • statistics

embeddings fields

values

A list of floats. The values field contains a numerical encoding (embedding vector) of the semantic content present in the given input text.

statistics

The statistics computed from the input text. Contains:

  • truncated: Indicates whether the input text was truncated due to being longer than the maximum number of tokens allowed by the model.

  • token_count: Number of tokens of the input text.

Sample response

{
"predictions":[
{
"embeddings":{
"values":[
0.0058424929156899452,
0.011848051100969315,
0.032247550785541534,
-0.031829461455345154,
-0.055369812995195389,
...
],
"statistics":{
"token_count":4,
"truncated":false
}
}
}
]
}

Examples

Embed a text string

The following example shows how to obtain the embedding of a text string.

REST

After you set up your environment, you can use REST to test a text prompt. The following sample sends a request to the publisher model endpoint.

Before using any of the request data, make the following replacements:

  • PROJECT_ID: Your project ID.
  • TEXT: The text that you want to generate embeddings for. Limit: five texts of up to 2,048 tokens per text for all models except textembedding-gecko@001. The max input token length for textembedding-gecko@001 is 3072. For gemini-embedding-001, each request can only include a single input text. For more information, see Text embedding limits.
  • AUTO_TRUNCATE: If set to false, text that exceeds the token limit causes the request to fail. The default value is true.

HTTP method and URL:

POST https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/gemini-embedding-001:predict

Request JSON body:

{
 "instances": [
 { "content": "TEXT"}
 ],
 "parameters": { 
 "autoTruncate": AUTO_TRUNCATE 
 }
}

To send your request, choose one of these options:

curl

Save the request body in a file named request.json, and execute the following command:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/gemini-embedding-001:predict"

PowerShell

Save the request body in a file named request.json, and execute the following command:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/gemini-embedding-001:predict" | Select-Object -Expand Content

You should receive a JSON response similar to the following. Note that values has been truncated to save space.

Response

{
 "predictions": [
 {
 "embeddings": {
 "statistics": {
 "truncated": false,
 "token_count": 6
 },
 "values": [ ... ]
 }
 }
 ]
}
Note the following in the URL for this sample:
  • Use the generateContent method to request that the response is returned after it's fully generated. To reduce the perception of latency to a human audience, stream the response as it's being generated by using the streamGenerateContent method.
  • The multimodal model ID is located at the end of the URL before the method (for example, gemini-2.0-flash). This sample might support other models as well.

Python

To learn how to install or update the Vertex AI SDK for Python, see Install the Vertex AI SDK for Python. For more information, see the Python API reference documentation.

from__future__import annotations
fromvertexai.language_modelsimport TextEmbeddingInput, TextEmbeddingModel
defembed_text() -> list[list[float]]:
"""Embeds texts with a pre-trained, foundational model.
 Returns:
 A list of lists containing the embedding vectors for each input text
 """
 # A list of texts to be embedded.
 texts = ["banana muffins? ", "banana bread? banana muffins?"]
 # The dimensionality of the output embeddings.
 dimensionality = 3072
 # The task type for embedding. Check the available tasks in the model's documentation.
 task = "RETRIEVAL_DOCUMENT"
 model = TextEmbeddingModel.from_pretrained("gemini-embedding-001")
 kwargs = dict(output_dimensionality=dimensionality) if dimensionality else {}
 embeddings = []
 # gemini-embedding-001 takes one input at a time
 for text in texts:
 text_input = TextEmbeddingInput(text, task)
 embedding = model.get_embeddings([text_input], **kwargs)
 print(embedding)
 # Example response:
 # [[0.006135190837085247, -0.01462465338408947, 0.004978656303137541, ...]]
 embeddings.append(embedding[0].values)
 return embeddings

Go

Before trying this sample, follow the Go setup instructions in the Vertex AI quickstart using client libraries. For more information, see the Vertex AI Go API reference documentation.

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

import(
"context"
"fmt"
"io"
aiplatform"cloud.google.com/go/aiplatform/apiv1"
"cloud.google.com/go/aiplatform/apiv1/aiplatformpb"
"google.golang.org/api/option"
"google.golang.org/protobuf/types/known/structpb"
)
// embedTexts shows how embeddings are set for gemini-embedding-001 model
funcembedTexts(wio.Writer,project,locationstring)error{
// location := "us-central1"
ctx:=context.Background()
apiEndpoint:=fmt.Sprintf("%s-aiplatform.googleapis.com:443",location)
dimensionality:=3072
model:="gemini-embedding-001"
texts:=[]string{"banana muffins? ","banana bread? banana muffins?"}
client,err:=aiplatform.NewPredictionClient (ctx,option.WithEndpoint(apiEndpoint))
iferr!=nil{
returnerr
}
deferclient.Close()
endpoint:=fmt.Sprintf("projects/%s/locations/%s/publishers/google/models/%s",project,location,model)
allEmbeddings:=make([][]float32,0,len(texts))
// gemini-embedding-001 takes 1 input at a time
for_,text:=rangetexts{
instances:=make([]*structpb.Value,1)
instances[0]=structpb.NewStructValue(&structpb.Struct{
Fields:map[string]*structpb.Value{
"content":structpb.NewStringValue(text),
"task_type":structpb.NewStringValue("QUESTION_ANSWERING"),
},
})
params:=structpb.NewStructValue(&structpb.Struct{
Fields:map[string]*structpb.Value{
"outputDimensionality":structpb.NewNumberValue(float64(dimensionality)),
},
})
req:=&aiplatformpb.PredictRequest{
Endpoint:endpoint,
Instances:instances,
Parameters:params,
}
resp,err:=client.Predict(ctx,req)
iferr!=nil{
returnerr
}
// Process the prediction for the single text
// The response will contain one prediction because we sent one instance.
iflen(resp.Predictions)==0{
returnfmt.Errorf("no predictions returned for text \"%s\"",text)
}
prediction:=resp.Predictions[0]
embeddingValues:=prediction.GetStructValue().Fields["embeddings"].GetStructValue().Fields["values"].GetListValue().Values
currentEmbedding:=make([]float32,len(embeddingValues))
forj,value:=rangeembeddingValues{
currentEmbedding[j]=float32(value.GetNumberValue())
}
allEmbeddings=append(allEmbeddings,currentEmbedding)
}
iflen(allEmbeddings) > 0{
fmt.Fprintf(w,"Dimensionality: %d. Embeddings length: %d",len(allEmbeddings[0]),len(allEmbeddings))
}else{
fmt.Fprintln(w,"No texts were processed.")
}
returnnil
}

Java

Before trying this sample, follow the Java setup instructions in the Vertex AI quickstart using client libraries. For more information, see the Vertex AI Java API reference documentation.

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

import staticjava.util.stream.Collectors.toList;
importcom.google.cloud.aiplatform.v1.EndpointName ;
importcom.google.cloud.aiplatform.v1.PredictRequest ;
importcom.google.cloud.aiplatform.v1.PredictResponse ;
importcom.google.cloud.aiplatform.v1.PredictionServiceClient ;
importcom.google.cloud.aiplatform.v1.PredictionServiceSettings ;
importcom.google.protobuf.Struct ;
importcom.google.protobuf.Value ;
importjava.io.IOException;
importjava.util.ArrayList;
importjava.util.List;
importjava.util.OptionalInt;
importjava.util.regex.Matcher;
importjava.util.regex.Pattern;
publicclass PredictTextEmbeddingsSample{
publicstaticvoidmain(String[]args)throwsIOException{
// TODO(developer): Replace these variables before running the sample.
// Details about text embedding request structure and supported models are available in:
// https://cloud.google.com/vertex-ai/docs/generative-ai/embeddings/get-text-embeddings
Stringendpoint="us-central1-aiplatform.googleapis.com:443";
Stringproject="YOUR_PROJECT_ID";
Stringmodel="gemini-embedding-001";
predictTextEmbeddings(
endpoint,
project,
model,
List.of("banana bread?","banana muffins?"),
"QUESTION_ANSWERING",
OptionalInt.of(3072));
}
// Gets text embeddings from a pretrained, foundational model.
publicstaticList<List<Float>>predictTextEmbeddings(
Stringendpoint,
Stringproject,
Stringmodel,
List<String>texts,
Stringtask,
OptionalIntoutputDimensionality)
throwsIOException{
PredictionServiceSettings settings=
PredictionServiceSettings .newBuilder().setEndpoint(endpoint).build();
Matchermatcher=Pattern.compile("^(?<Location>\\w+-\\w+)").matcher(endpoint);
Stringlocation=matcher.matches()?matcher.group("Location"):"us-central1";
EndpointName endpointName=
EndpointName .ofProjectLocationPublisherModelName (project,location,"google",model);
List<List<Float>>floats=newArrayList<>();
// You can use this prediction service client for multiple requests.
try(PredictionServiceClient client=PredictionServiceClient .create(settings)){
// gemini-embedding-001 takes one input at a time.
for(inti=0;i < texts.size();i++){
PredictRequest .Builderrequest=
PredictRequest .newBuilder().setEndpoint(endpointName.toString ());
if(outputDimensionality.isPresent()){
request.setParameters(
Value .newBuilder()
.setStructValue(
Struct .newBuilder()
.putFields(
"outputDimensionality",valueOf(outputDimensionality.getAsInt()))
.build()));
}
request.addInstances(
Value .newBuilder()
.setStructValue(
Struct .newBuilder()
.putFields("content",valueOf(texts.get(i)))
.putFields("task_type",valueOf(task))
.build()));
PredictResponse response=client.predict(request.build());
for(Value prediction:response.getPredictionsList ()){
Value embeddings=prediction.getStructValue().getFieldsOrThrow("embeddings");
Value values=embeddings.getStructValue ().getFieldsOrThrow("values");
floats.add(
values.getListValue ().getValuesList().stream()
.map(Value::getNumberValue)
.map(Double::floatValue)
.collect(toList()));
}
}
returnfloats;
}
}
privatestaticValue valueOf(Strings){
returnValue .newBuilder().setStringValue(s).build();
}
privatestaticValue valueOf(intn){
returnValue .newBuilder().setNumberValue(n).build();
}
}

Node.js

Before trying this sample, follow the Node.js setup instructions in the Vertex AI quickstart using client libraries. For more information, see the Vertex AI Node.js API reference documentation.

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

asyncfunctionmain(
project,
model='gemini-embedding-001',
texts='banana bread?;banana muffins?',
task='QUESTION_ANSWERING',
dimensionality=0,
apiEndpoint='us-central1-aiplatform.googleapis.com'
){
constaiplatform=require('@google-cloud/aiplatform');
const{PredictionServiceClient}=aiplatform.v1;
const{helpers}=aiplatform;// helps construct protobuf.Value objects.
constclientOptions={apiEndpoint:apiEndpoint};
constlocation='us-central1';
constendpoint=`projects/${project}/locations/${location}/publishers/google/models/${model}`;
asyncfunctioncallPredict(){
constinstances=texts
.split(';')
.map(e=>helpers .toValue({content:e,task_type:task}));
constclient=newPredictionServiceClient (clientOptions);
constparameters=helpers .toValue(
dimensionality > 0?{outputDimensionality:parseInt(dimensionality)}:{}
);
constallEmbeddings=[]
// gemini-embedding-001 takes one input at a time.
for(constinstanceofinstances){
constrequest={endpoint,instances:[instance],parameters};
const[response]=awaitclient.predict(request);
constpredictions=response.predictions;
constembeddings=predictions.map(p=>{
constembeddingsProto=p.structValue.fields.embeddings;
constvaluesProto=embeddingsProto.structValue.fields.values;
returnvaluesProto.listValue.values.map(v=>v.numberValue);
});
allEmbeddings.push(embeddings[0])
}
console.log('Got embeddings: \n'+JSON.stringify(allEmbeddings));
}
callPredict();
}

Supported text languages

All text embedding models support and have been evaluated on English-language text. The text-multilingual-embedding-002 model additionally supports and has been evaluated on the following languages:

  • Evaluated languages: Arabic (ar), Bengali (bn), English (en), Spanish (es), German (de), Persian (fa), Finnish (fi), French (fr), Hindi (hi), Indonesian (id), Japanese (ja), Korean (ko), Russian (ru), Swahili (sw), Telugu (te), Thai (th), Yoruba (yo), Chinese (zh)
  • Supported languages: Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusiasn, Bengali, Bulgarian, Burmese, Catalan, Cebuano, Chichewa, Chinese, Corsican, Czech, Danish, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Korean, Kurdish, Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Nepali, Norwegian, Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scottish Gaelic, Serbian, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Sotho, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Telugu, Thai, Turkish, Ukrainian, Urdu, Uzbek, Vietnamese, Welsh, West Frisian, Xhosa, Yiddish, Yoruba, Zulu.

The gemini-embedding-001 model supports the following languages:

Arabic, Bengali, Bulgarian, Chinese (Simplified and Traditional), Croatian, Czech, Danish, Dutch, English, Estonian, Finnish, French, German, Greek, Hebrew, Hindi, Hungarian, Indonesian, Italian, Japanese, Korean, Latvian, Lithuanian, Norwegian, Polish, Portuguese, Romanian, Russian, Serbian, Slovak, Slovenian, Spanish, Swahili, Swedish, Thai, Turkish, Ukrainian, Vietnamese, Afrikaans, Amharic, Assamese, Azerbaijani, Belarusian, Bosnian, Catalan, Cebuano, Corsican, Welsh, Dhivehi, Esperanto, Basque, Persian, Filipino (Tagalog), Frisian, Irish, Scots Gaelic, Galician, Gujarati, Hausa, Hawaiian, Hmong, Haitian Creole, Armenian, Igbo, Icelandic, Javanese, Georgian, Kazakh, Khmer, Kannada, Krio, Kurdish, Kyrgyz, Latin, Luxembourgish, Lao, Malagasy, Maori, Macedonian, Malayalam, Mongolian, Meiteilon (Manipuri), Marathi, Malay, Maltese, Myanmar (Burmese), Nepali, Nyanja (Chichewa), Odia (Oriya), Punjabi, Pashto, Sindhi, Sinhala (Sinhalese), Samoan, Shona, Somali, Albanian, Sesotho, Sundanese, Tamil, Telugu, Tajik, Uyghur, Urdu, Uzbek, Xhosa, Yiddish, Yoruba, Zulu.

Model versions

To use a current stable model, specify the model version number, for example gemini-embedding-001. Specifying a model without a version number, isn't recommended, as it is merely a legacy pointer to another model and isn't stable.

For more information, see Model versions and lifecycle.

What's next

For detailed documentation, see the following:

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.

Last updated 2025年11月07日 UTC.