homepage

This issue tracker has been migrated to GitHub , and is currently read-only.
For more information, see the GitHub FAQs in the Python's Developer Guide.

Author tim.peters
Recipients mark.dickinson, pitrou, tim.peters
Date 2015年09月15日.19:24:37
SpamBayes Score -1.0
Marked as misclassified Yes
Message-id <1442345077.64.0.0433158743993.issue25129@psf.upfronthosting.co.za>
In-reply-to
Content
Stare at footnote 2 for the Reference Manual's "Binary arithmetic operations" section:
"""
[2] If x is very close to an exact integer multiple of y, it’s possible for x//y to be one larger than (x-x%y)//y due to rounding. In such cases, Python returns the latter result, in order to preserve that divmod(x,y)[0] * y + x % y be very close to x.
"""
This is such a case.
>>> x
4.679999999999999e-06
>>> y
6e-08
>>> divmod(x,y)[0] * y + x % y == x
True
>>> (x/y) * y + x % y == x
False
>>> ((x/y) * y + x % y) / x # and not close at all
1.0128205128205128
Yes, trying to preserve identities in floating-point always was a fool's errand ;-)
Note that "but x is an _exact_ integer multiple of y, not just 'very close to'" would be succumbing to an illusion:
>>> dx = decimal.Decimal(x)
>>> dy = decimal.Decimal(y)
>>> dx / dy
Decimal('77.99999999999999426488108630')
It's just that x/y _appears_ to be an exact integer (78) due to rounding. As the decimal calcs show, infinite-precision floor division really would return 77.
History
Date User Action Args
2015年09月15日 19:24:37tim.peterssetrecipients: + tim.peters, mark.dickinson, pitrou
2015年09月15日 19:24:37tim.peterssetmessageid: <1442345077.64.0.0433158743993.issue25129@psf.upfronthosting.co.za>
2015年09月15日 19:24:37tim.peterslinkissue25129 messages
2015年09月15日 19:24:37tim.peterscreate

AltStyle によって変換されたページ (->オリジナル) /