বিষয়বস্তুতে চলুন
উইকিপিডিয়া একটি মুক্ত বিশ্বকোষ

বিন্যাস

উইকিপিডিয়া, মুক্ত বিশ্বকোষ থেকে
(Permutation থেকে পুনর্নির্দেশিত)
বিন্যাসের প্রথম অর্থ অনুযায়ী, ছয়টি সারির প্রত্যেকটি তিনটি পৃথক বলের বিভিন্ন বিন্যাস

বিন্যাস হলো পৃথক ক্রমে বস্তু বা চিহ্নসমূহ পুনর্সজ্জিত করা। প্রতিটি অনন্য ক্রমকে একটি বিন্যাস বলে। গণিতে, একটি সেটের বিন্যাস বলতে দুইটি ভিন্ন জিনিস বুঝাতে পারে:

  • সেটের উপাদানসমূহকে একটি ধারায় বা একটি রৈখিক ক্রমে সাজানো, অথবা
  • একটি ক্রমিক সেটের রৈখিক ক্রম পরিবর্তন করার ঘটনা বা প্রক্রিয়া।[]

উদাহরণস্বরূপ, এক থেকে ছয় পর্যন্ত সংখ্যাকে কোনো সংখ্যার পুনরাবৃত্তি ছাড়া পাশাপাশি সজ্জিত করলে ৭২০ টি বিন্যাস পাওয়া যাবে। এদের মধ্যে একটি হলো ৪৫৬১২৩। সেট তত্ত্ব অনুযায়ী, বিন্যাস হলো একটি ক্রম যা একটি সেট থেকে একটি উপাদান এক ও কেবলমাত্র একবার নিয়ে গঠিত। বিন্যাসের ধারণা সেট তত্ত্ব বা সমাবেশ থেকে আলাদা, কেননা উপাদানসমূহের ক্রম সেট বা সমাবেশের ক্ষেত্রে গ্রহণীয় নয়।

১ থেকে ৮ পর্যন্ত সংখ্যাকে কোনো পুনরাবৃত্তি ছাড়াই প্রায় হাজারবারের থেকেও বেশি বিন্যাস করা সম্ভব

বিন্যাস গণণা

[সম্পাদনা ]

একটি ক্রমের বিন্যাস হল:

P r n = n ! ( n r ) ! {\displaystyle P_{r}^{n}={\frac {n!}{(n-r)!}}} {\displaystyle P_{r}^{n}={\frac {n!}{(n-r)!}}}

যেখানে:

  • r প্রতিটি বিন্যাসের আকার অর্থাৎ মূ্ল উপাদানের সেট থেকে প্রতিবারে ঠিক কতটি উপাদান নিয়ে প্রতিটি বিন্যাস গঠিত হচ্ছে তার সংখ্যা
  • n সেই সেটের আকার যা থেকে বিন্যাসের উপাদান গৃহীত হয় বা মূল উপাদানের সেটে বিদ্যমান মোট উপাদান সংখ্যা
  • ! হল ফ্যাক্টরিয়াল অপারেটর।

উদাহরণস্বরূপ আমাদের যদি একটি সেটে মোট ১০ টি ভিন্ন ভিন্ন উপাদান থাকে যেমন: {১, ২, ৩, ... ১০}, তবে পূর্ণসংখ্যাগুলো থেকে প্রতিবারে তিনটি সংখ্যা নিয়ে তৈরি বিন্যাসের (যেখানে কোনো উপাদানের পুনরাবৃত্তি হয়না) মোট সংখ্যা নির্ণয় করতে n =১০ ও r = ৩ নিয়ে এভাবে গণণা করতে হবে P(১০,৩) = ১০!/(১০−৩)! = (×ばつ১০)/(×ばつ৭) = ×ばつ১০ = ৭২০. এখানে মোট বিন্যাস সংখ্যা ৭২০ এর অর্থ হল ১০ টি উপাদান বিশিষ্ট মূল উপাদানের সেটটি থেকে (১, ২, ৩), (২, ১, ৩), (২, ৩, ১), (৫, ৩, ৪), (৩, ৫, ৪), (৩, ৪, ৫) ইত্যাদি -এরকম ভাবে (যেখানে গঠিত বিন্যাসগুলোর প্রতিটিতে অনন্য উপদান রয়েছে ৩ টি) গঠিত বিন্যাস গুলোর মোট সংখ্যা ৭২০ টি। যে সকল ক্ষেত্রে n = r সেখানে উপর্যুক্ত সূত্রটি হবে:

P = n ! 0 ! = n ! {\displaystyle P={\frac {n!}{0!}}=n!} {\displaystyle P={\frac {n!}{0!}}=n!}

শূণ্যের ফ্যাক্টরিয়াল ০! এর ১ হবার কারণ, সেট তত্ত্ব অনুযায়ী একটি ফাঁকা সেটকে কেবল একটি ক্রমে বিন্যাস করা যাবে, তাই ০! = ১. যদি n = ০ হয় সেক্ষেত্রেও একটি অনন্য ক্রম পাওয়া যাবে. উল্লেখ্য যে, উপর্যুক্ত প্রক্রিয়া শুধুমাত্র সে সকল ক্ষেত্রে প্রযোজ্য হবে যে সকল ক্ষেত্রে মূল সেটটিতে বিদ্যমান উপাদানগুলোর প্রত্যেকে অনন্য বা একে অপর থেকে ভিন্ন।

এই নিবন্ধটি অসম্পূর্ণ। আপনি চাইলে এটিকে সম্প্রসারিত করে উইকিপিডিয়াকে সাহায্য করতে পারেন।
  1. Webster (1969)

AltStyle によって変換されたページ (->オリジナル) /