W3C

SPARQL Query Language for RDF

W3C Working Draft 21 July 2005

This version:
http://www.w3.org/TR/2005/WD-rdf-sparql-query-20050721/
Previous version:
http://www.w3.org/TR/2005/WD-rdf-sparql-query-20050419/
Latest version:
http://www.w3.org/TR/rdf-sparql-query/
Editors:
Eric Prud'hommeaux, W3C <eric@w3.org>
Andy Seaborne, Hewlett-Packard Laboratories, Bristol <andy.seaborne@hp.com>

Copyright © 2005 W3C ® ( MIT, ERCIM, Keio), All Rights Reserved. W3C liability, trademark, and document use rules apply.


Abstract

RDF is a flexible and extensible way to represent information about World Wide Web resources. It is used to represent, among other things, personal information, social networks, metadata about digital artifacts, as well as provide a means of integration over disparate sources of information. A standardized query language for RDF data with multiple implementations offers developers and end users a way to write and to consume the results of queries across this wide range of information. Used with a common protocol, applications can access and combine information from across the Web.

This document describes the query language part of the SPARQL Protocol And RDF Query Language for easy access to RDF stores. It is designed to meet the requirements and design objectives described in RDF Data Access Use Cases and Requirements

Status of This document

This is a Last Call Working Draft. The first release of this document was 12 October 2004 and the RDF Data Access Working Group (part of the Semantic Web Activity) has made its best effort to address comments recieved since then, releasing several drafts and resolving a list of issues meanwhile. Some issues were decided despite outstanding dissent; they are indicated in "issue" style in some cases. All outstanding dissent is indexed in the issues list. The working group seeks confirmation that comments have been addressed to the satisfaction of the community.

Comments on this document are due 1 September 2005; please send them to public-rdf-dawg-comments@w3.org, a mailing list with a public archive.

A change log shows the differences between this document and the previous version.

This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current W3C publications and the latest revision of this technical report can be found in the W3C technical reports index at http://www.w3.org/TR/.

Publication as a Working Draft does not imply endorsement by the W3C Membership. This is a draft document and may be updated, replaced or obsoleted by other documents at any time. It is inappropriate to cite this document as other than work in progress.

This document was produced under the 5 February 2004 W3C Patent Policy. The Working Group maintains a public list of patent disclosures relevant to this document; that page also includes instructions for disclosing [and excluding] a patent. An individual who has actual knowledge of a patent which the individual believes contains Essential Claim(s) with respect to this specification should disclose the information in accordance with section 6 of the W3C Patent Policy.

Per section 4 of the W3C Patent Policy, Working Group participants have 150 days from the title page date of this document to exclude essential claims from the W3C RF licensing requirements with respect to this document series. Exclusions are with respect to the exclusion reference document, defined by the W3C Patent Policy to be the latest version of a document in this series that is published no later than 90 days after the title page date of this document.


Table of Contents

Appendices

See also:

Issues

DAWG issues list


1 Introduction

An RDF graph is a set of triples; each triple consists of a subject, a predicate and an object. This is defined in RDF Concepts and Abstract Syntax. These triples can come from a variety of sources. For instance, they may come directly from an RDF document. They may be inferred from other RDF triples. They may be the RDF expression of data stored in other formats, such as XML or relational databases.

SPARQL is a query language for getting information from such RDF graphs. It provides facilities to:

As a data access language, it is suitable for both local and remote use. The companion SPARQL Protocol for RDF document [11] describes the remote access protocol.

1.1 Document Conventions

In this document, examples assume the following namespace prefix bindings unless otherwise stated:

PrefixIRI
rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#
rdfs http://www.w3.org/2000/01/rdf-schema#
xsd http://www.w3.org/2001/XMLSchema#

2 Making Simple Queries

The SPARQL query language is based on matching graph patterns. The simplest graph pattern is the triple patterns, which is like an RDF triple but with the possibility of a variable in any of the subject, predicate or object positions. Combining these gives a basic graph pattern, where an exact match to a graph is needed to fulfill a pattern.

Later sections of this document describe how other graph patterns can be built using the graph operators OPTIONAL and UNION ; how graph patterns can be grouped together; how queries can extract information from more than one graph, and how it is also possible to restrict the values allowed in matching a pattern.

In this section, we cover simple triple patterns, basic graph patterns as well as the SPARQL syntax for basic pattern queries.

2.1 Writing a Simple Query

The example below shows a SPARQL query to find the title of a book from the information in the given RDF graph. The query consists of two parts, the SELECT clause and the WHERE clause. The SELECT clause identifies the variables to appear in the query results, and the WHERE clause has one triple pattern.

Data:

<http://example.org/book/book1> <http://purl.org/dc/elements/1.1/title> "SPARQL Tutorial" . 

Query:

SELECT ?title
WHERE
{
 <http://example.org/book/book1> <http://purl.org/dc/elements/1.1/title> ?title .
}

Query Result:

title
"SPARQL Tutorial"

Query Term Syntax

The terms delimited by "<>" are IRI references [19]. They stand for IRIs, either directly, or relative to a base IRI. IRIs are a generalization of URIs [13] and are fully compatible with URIs and URLs.

The query terms can be literals which are a string (enclosed in quotes, either double quotes "" or single quotes '' ), with an optional language tag (introduced by @) or an optional datatype IRI (introduced by ^^). As a convenience, integers can be written directly and are interpreted as typed literals of datatype xsd:integer; floating point numbers can also be directly written and are interpreted as xsd:double. Boolean values of type xsd:boolean literals can also be written as true or false.

Variables in SPARQL queries have global scope; it is the same variable everywhere in the query that the same name is used. Variables are indicated by "?"; the "?" does not form part of the variable. "$" is an alternative to "?". In a query, $abc and ?abc are the same variable.

SPARQL provides an abbreviation mechanism for IRIs. Prefixes can be defined and a QName-like syntax [14] provides shorter forms. Prefixes may be used anywhere after they are declared; redefining a prefix causes the new definition to be used from that point in the query syntax. The base IRI for the resolution of relative IRIs may be explicitly declared with the BASE keyword.

Multiple IRIs may have the same appearance. Characters in different scripts may look similar (a Cyrillic "о" may appear similar to a Latin "o"). A character followed by combining characters may have the same visual representation as another character (LATIN SMALL LETTER E followed by COMBINING ACUTE ACCENT has the same visual representation as LATIN SMALL LETTER E WITH ACUTE). Users of SPARQL must take care to construct queries with IRIs that match the IRIs in the data. Further information about matching of similar characters can be found in Unicode Security Considerations [21].

Triple Patterns are written as a list of subject, predicate, object; there are abbreviated ways of writing some common triple pattern constructs.

Examples of Query Syntax

The following examples express the same query:

PREFIX dc: <http://purl.org/dc/elements/1.1/>
SELECT ?title
WHERE { <http://example.org/book/book1> dc:title ?title }
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX : <http://example.org/book/>
SELECT $title
WHERE { :book1 dc:title $title }
BASE <http://example.org/book/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
SELECT ?title
WHERE { <book1> dc:title ?title }

Prefixes are syntactic: the prefix name does not affect the query, nor do prefix names in queries need to be the same prefixes as used for data. The following query is equivalent to the previous examples and will give the same results when applied to the same data:

BASE <http://example.org/book/>
PREFIX dcore: <http://purl.org/dc/elements/1.1/>
SELECT ?title
WHERE { <book1> dcore:title ?title }

Data descriptions used in this document

The data format used in this document is Turtle [15], used to show each triple explicitly. Turtle allows URIs to be abbreviated with prefixes:

@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix : <http://example.org/book/> .
:book1 dc:title "SPARQL Tutorial" .

Result Descriptions used in this document

The term "binding" is used as a descriptive term to refer to a pair of (variable, RDF term). In this document, we illustrate results in tabular form. If variable x is bound to "Alice" and variable y is bound to "Bob", we show this as:

x y
"Alice" "Bob"

Not every binding needs to exist in every row of the table. Optional matches and alternative matches may leave some variables unbound.

Results can be returned in XML using the SPARQL Variable Binding Results XML Format [16].

2.2 Initial Definitions

Definition: RDF Term

let I be the set of all IRIs.
let RDF-L be the set of all RDF Literals
let RDF-B be the set of all blank nodes in RDF graphs

The set of RDF Terms, RDF-T, is I union RDF-L union RDF-B.

This definition of RDF Term collects together several basic notions from the RDF data model.

Note that all IRIs are absolute; they may or may not include a fragment identifier [3987, sec 3.1]. Also note that IRIs include URIs [13] and URLs. This definition also matches the definition of RDF URI Reference from [12].

Definition: Query Variable

A query variable is a member of the set V where V is infinite and disjoint from RDF-T.

Queries can include blank nodes; the blank nodes in a query are disjoint from all blank nodes in the RDF graphs being matched and members of the set of variables.

Definition: Graph Pattern

A Graph Pattern is one of:

Definition: SPARQL Query

A SPARQL query is a tuple (GP, DS, SM, R) where:

The graph pattern of a query is called the query pattern.

The graph pattern may be the empty pattern. The set of solution modifiers may be the empty set.

The graph pattern of a query is called the query pattern.

2.3 Triple Patterns

The building blocks of queries are triple patterns. The following triple pattern has a subject variable (the variable book), a predicate of dc:title and an object variable (the variable title).

 ?book dc:title ?title .

Matching a triple pattern to a graph gives bindings between variables and RDF Terms so that the triple pattern, with the variables replaced by the corresponding RDF terms, is a triple of the graph being matched.

Definition: Triple Pattern

A triple pattern is member of the set:
(RDF-T union V) x (I union V) x (RDF-T union V)

This definition of Triple Pattern includes literal subjects. This has been noted by RDF-core.

"[The RDF core Working Group] noted that it is aware of no reason why literals should not
 be subjects and a future WG with a less restrictive charter may
 extend the syntaxes to allow literals as the subjects of statements."

Any SPARQL triple pattern with a literal as subject will fail to match on any RDF graph.

2.4 Pattern Solutions

Definition: Pattern Solution

A pattern solution is a substitution function from a subset of the set of variables to the set of RDF terms, RDF-T.

The result of replacing every v in a graph pattern P by S(v) is written S(P).

If variable v is not in the domain of S then S(v) is defined to be v.

Definition: Query Solution

Given query Q = (GP, DS, SM, R) then S is a query solution of Q if S is a pattern solution for GP matching dataset DS.

For example, the query:

PREFIX dc: <http://purl.org/dc/elements/1.1/>
SELECT ?book ?title
WHERE { ?book dc:title ?title }

has a single triple pattern as the query pattern. It matches a graph of a single triple:

<http://example.org/book/book1> <http://purl.org/dc/elements/1.1/title> "SPARQL" .

with solution:

?book ?title
<http://example.org/book/book1> "SPARQL"

2.5 Basic Graph Patterns

Definition: Basic Graph Pattern

A Basic Graph Pattern is a set of Triple Patterns.

A basic graph pattern matches on graph G with solution S if S(GP) is an RDF graph and is subgraph of G.

The SPARQL syntax uses the keyword WHERE to introduce the Query Pattern.

For a basic graph pattern to match, there must be a solution where each of the triple patterns matches with the same solution.

Data:

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
_:a foaf:name "Johnny Lee Outlaw" .
_:a foaf:mbox <mailto:jlow@example.com> .

There is a blank node [12] in this dataset, identified by _:a. The label is only used within the file for encoding purposes. The label information is not in the RDF graph.

Query:

PREFIX foaf: <http://xmlns.com/foaf/0.1/> 
SELECT ?mbox
WHERE
 { ?x foaf:name "Johnny Lee Outlaw" .
 ?x foaf:mbox ?mbox }

Query Result:

mbox
<mailto:jlow@example.com>

This query contains a basic graph pattern of two triple patterns, each of which must match for the graph pattern to match.

2.6 Multiple Matches

The results of a query are all the ways a query can match the graph being queried. Each result is one solution to the query and there may be zero, one or multiple results to a query.

Data:

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
_:a foaf:name "Johnny Lee Outlaw" .
_:a foaf:mbox <mailto:jlow@example.com> .
_:b foaf:name "Peter Goodguy" .
_:b foaf:mbox <mailto:peter@example.org> .

Query:

PREFIX foaf: <http://xmlns.com/foaf/0.1/> 
SELECT ?name ?mbox
WHERE
 { ?x foaf:name ?name .
 ?x foaf:mbox ?mbox }

Query Result:

name mbox
"Johnny Lee Outlaw" <mailto:jlow@example.com>
"Peter Goodguy" <mailto:peter@example.org>

The results enumerate the RDF terms to which the selected variables can be bound in the query pattern. In the above example, the following two subsets of the data provided the two matches.

 _:a foaf:name "Johnny Lee Outlaw" .
 _:a foaf:box <mailto:jlow@example.com> .
 _:b foaf:name "Peter Goodguy" .
 _:b foaf:box <mailto:peter@example.org> .

This is a simple, conjunctive graph pattern match, and all the variables used in the query pattern must be bound in every solution.

2.7 Blank Nodes

Blank Nodes and Queries

A blank node can appear in a query pattern. It behaves as a variable; a blank node in a query pattern may match any RDF term.

Blank Nodes and Query Results

The presence of blank nodes can be indicated by labels in the serialization of query results. An application or client receiving the results of a query can tell that two solutions or two variable bindings differ in blank nodes but this information is only scoped to the results as defined in "SPARQL Variable Binding Results XML Format" or the CONSTRUCT result form.

Data:

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
_:a foaf:name "Alice" .
_:b foaf:name "Bob" .

Query:

PREFIX foaf: <http://xmlns.com/foaf/0.1/> 
SELECT ?x ?name
WHERE { ?x foaf:name ?name }
x name
_:c "Alice"
_:d "Bob"

The results above could equally be given with different blank node labels because the labels in the results only indicate whether RDF terms in the solutions were the same or different.

x name
_:r "Alice"
_:s "Bob"

These two results have the same information: the blank nodes used to match the query are different in the two solutions. There is no relation between using _:a in the results and any blank node label in the data graph.

2.8 Other Syntactic Forms

There are a number of syntactic forms that abbreviate some common sequences of triples. These syntactic forms do not change the meaning of the query.

Predicate-Object Lists

Triple patterns with a common subject can be written so that the subject is only written once, and used for more than one triple pattern be employing the ";" notation.

 ?x foaf:name ?name ;
 foaf:mbox ?mbox .

This is the same as writing the triple patterns:

 ?x foaf:name ?name .
 ?x foaf:mbox ?mbox . 

Object Lists

If triple patterns share both subject and predicate, then these can be written using the "," notation.

 ?x foaf:nick "Alice" , "Alice_" .

is the same as writing the triple patterns:

 ?x foaf:nick "Alice" .
 ?x foaf:nick "Alice_" .

Blank Nodes

Blank nodes have labels which are scoped to the query. They are written as "_:a" for a blank node with label "a".

A blank node that is used in only one place in the query syntax can be abbreviated with []. A unique blank node will be created and used to form the triple pattern.

The [:p :v] construct can be used to form triple patterns with a blank node for subject.

The following two forms

[ :p "v" ] .
[] :p "v" .

allocate a unique blank node label (here "b57") and are equivalent to writing:

_:b57 :p "v" .

Abbreviated blank node syntax can be combined with other abbreviations for common predicates and common objects.

 [ foaf:name ?name ;
 foaf:mbox <alice@example.org> ]

This is the same as writing the following basic graph pattern for some uniquely allocated blank node:

 _:b18 foaf:name ?name .
 _:b18 foaf:mbox <alice@example.org> .

RDF Collections

RDF collections can be written in triple patterns using the syntax "( )". The form () is an alternative for the IRI rdf:nil which is <http://www.w3.org/1999/02/22-rdf-syntax-ns#nil> .

(1 ?x 3)

is short for:

 _:b0 rdf:first 1 .
 _:b0 rdf:rest _:b1 .
 _:b1 rdf:first ?x .
 _:b1 rdf:rest _:b2 .
 _:b2 rdf:first 3 .
 _:b2 rdf:rest rdf:nil .

Other

The keyword "a" can be used as a predicate in a triple pattern and is an alternative for the IRI rdf:type which is <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> .

 ?x a :Class1 .
 [ a :myClass ] :p "v" .
 ?x rdf:type :Class1 .
 _:b0 rdf:type :myClass .
 _:b0 :p "v" .

3 Working with RDF Literals

An RDF Literal is written in SPARQL as a string containing the lexical form of the literal, followed by an optional language tag or an optional datatype. There are convenience forms for numeric-types literals which are of type xsd:integer, xsd:double and also for xsd:boolean.

Examples of literal syntax in SPARQL include:

3.1 Matching RDF Literals

The data below contains a number of RDF literals:

@prefix dt: <http://example.org/datatype#> .
@prefix ns: <http://example.org/ns#> .
@prefix : <http://example.org/ns#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
:x ns:p "42"^^xsd:integer .
:y ns:p "abc"^^dt:specialDatatype .
:z ns:p "cat"@en .

Matching Integers

The pattern in the following query has a solution :x because 42 is syntax for "42"^^<http://www.w3.org/2001/XMLSchema#integer>.

SELECT ?v WHERE { ?v ?p 42 }

Matching Arbitrary Datatypes

The following query has a solution with variable v being :y. The query processor does not have to have any understanding of the values in the space of the datatype because, in this case, lexical form and datatype IRI both match exactly.

SELECT ?v WHERE { ?v ?p "abc"^^<http://example.org/datatype#specialDatatype> }

Matching Language Tags

This following query has no solution because "cat" is not the same RDF literal as "cat"@en:

SELECT ?x WHERE { ?x ?p "cat" }

but this does find a solution where variable x is substituted by :z:

SELECT ?x WHERE { ?x ?p "cat"@en }

3.2 Value Constraints

Graph pattern matching creates bindings of variables. It is possible to further restrict solutions by constraining the allowable bindings of variables to RDF Terms. Value constraints take the form of boolean-valued expressions; the language also allows application-specific constraints on the values in a query solution.

Data:

@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix : <http://example.org/book/> .
@prefix ns: <http://example.org/ns#> .
:book1 dc:title "SPARQL Tutorial" . 
:book1 ns:price 42 .
:book2 dc:title "The Semantic Web" . 
:book2 ns:price 23 .

Query:

PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX ns: <http://example.org/ns#> 
SELECT ?title ?price
WHERE { ?x ns:price ?price .
 FILTER (?price < 30) .
 ?x dc:title ?title . }

Query Result:

title price
"The Semantic Web" 23

By having a constraint on the "price" variable, only book2 matches the query because there is a restriction on the allowable values of "price".

3.3 Value Constraints – Definition

Definition: Value Constraint

A value constraint is a boolean-valued expression of variables and RDF Terms.

For value constraint C, a solution S matches C if S(C) is true.

S(C) is the substitution of variables mentioned in C.

Constraints may be restrictions of the value of an RDF Term or they may be restrictions on some part of an RDF term, such as its lexical form. SPARQL defines a set of functions & operations (sections 11.1 and 11.2) that all implementations must provide. In addition, there is an extension mechanism (section 11.3) for operations that are specific to an application domain or kind of data.

A constraint may lead to an error condition when testing some RDF term. The exact error will depend on the constraint: for example, in numeric operations, solutions with variables bound to a non-number or a blank node will lead to an error. Any potential solution that causes an error condition in a constraint will not form part of the final results, but does not cause the query to fail.

4 Graph Patterns

Complex graph patterns can be made by combining simpler graph patterns. The ways of creating graph patterns are:

4.1 Group Graph Patterns

Definition: Group Graph Pattern

A group graph pattern GP is a set of graph patterns, GPi.

A solution of Group Graph Pattern GP on graph G is any solution S such that, for every element GPi of GP, S is a solution of GPi.

A group graph pattern is syntactically delimited with braces: {}.

For any solution, the same variable is given the same value everywhere in the set of graph patterns making up the group graph pattern. A Basic Graph Pattern is a group of triple patterns. For example, this query has a group pattern of one basic graph pattern as the query pattern.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?mbox
WHERE {
 ?x foaf:name ?name .
 ?x foaf:mbox ?mbox 
 }
The same solutions would be obtained from a query that grouped the triple patterns as below:
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?mbox
WHERE { { ?x foaf:name ?name ;
 foaf:mbox ?mbox }
 }

Because a solution to a group graph pattern is a solution to each element of the group, and a solution of a basic graph pattern is a solution to each triple pattern, these queries also have the same solutions as:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?mbox
WHERE { ?x foaf:name ?name ;
 foaf:mbox ?mbox
 }

4.2 Unbound variables

Solutions to graph patterns do not necessarily have to have every variable bound in every solution that causes a graph pattern to be matched. In particular, the OPTIONAL and UNION graph patterns can lead to query results where a variable may be bound in some solutions, but not in others.

4.3 Order of Evaluation

There is no implied order of graph patterns within a Group Graph Pattern. Any solution for the group graph pattern that can satisfy all the graph patterns in the group is valid, independently of the order that may be implied by the lexical order of the graph patterns in the group.

5 Including Optional Values

Basic graph patterns allow applications to make queries where entire query pattern must match for there to be a solution. For every solution of the query, every variable is bound to an RDF Term in a pattern solution. RDF is semi-structured: a regular, complete structure can not be assumed and it is useful to be able to have queries that allow information to be added to the solution where the information is available, but not to have the solution rejected because some part of the query pattern does not match. Optional matching provides this facility; if the optional part does not lead to any solutions, variables can be left unbound.

5.1 Optional Pattern Matching

Optional parts of the graph pattern may be specified syntactically with the OPTIONAL keyword applied to a graph pattern:

pattern OPTIONAL { pattern }

Data:

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
_:a rdf:type foaf:Person .
_:a foaf:name "Alice" .
_:a foaf:mbox <mailto:alice@work.example> .
_:b rdf:type foaf:Person .
_:b foaf:name "Bob" .
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?mbox
WHERE { ?x foaf:name ?name .
 OPTIONAL { ?x foaf:mbox ?mbox }
 }

With the data above, the query result is:

name mbox
"Alice" <mailto:alice@example.com>
"Bob"

There is no value of mbox in the solution where the name is "Bob". It is unbound.

This query finds the names of people in the data. If there is a triple with predicate mbox and same subject, a solution will contain the object of that triple as well. In the example, only a single triple pattern is given in the optional match part of the query but, in general, it is any graph pattern. The whole graph pattern of an optional graph pattern must match for the optional graph pattern to add to the query solution.

5.2 Constraints in Optional Pattern Matching

Constraints can be given in an optional graph pattern as this example shows:

@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix : <http://example.org/book/> .
@prefix ns: <http://example.org/ns#> .
:book1 dc:title "SPARQL Tutorial" . 
:book1 ns:price 42 .
:book2 dc:title "The Semantic Web" . 
:book2 ns:price 23 .
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX ns: <http://example.org/ns#> 
SELECT ?title ?price
WHERE { ?x dc:title ?title .
 OPTIONAL { ?x ns:price ?price . FILTER (?price < 30) }
 }
title price
"SPARQL Tutorial"
"The Semantic Web" 23

No price appears for the book with title "SPARQL Tutorial" because the optional graph pattern did not lead to a solution involving the variable price.

5.3 Multiple Optional Graph Patterns

Graph patterns are defined recursively. A graph pattern may have zero or more optional graph patterns, and any part of a query pattern may have an optional part. In this example, there are two optional graph patterns.

Data:

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
_:a foaf:name "Alice" .
_:a foaf:homepage <http://work.example.org/alice/> .
_:b foaf:name "Bob" .
_:b foaf:mbox <mailto:bob@work.example> .

Query:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?mbox ?hpage
WHERE { ?x foaf:name ?name .
 OPTIONAL { ?x foaf:mbox ?mbox } .
 OPTIONAL { ?x foaf:homepage ?hpage }
 }

Query result:

name mbox hpage
"Alice" <http://work.example.org/alice/>
"Bob" <mailto:bob@example.com>

5.4 Optional Matching – Formal Definition

In an optional match, either an additional graph pattern matches a graph, thereby defining one or more pattern solutions; or it passes any solutions without adding any additional bindings.

Definition: Optional Graph Pattern

An optional graph pattern is a combination of a pair of graph patterns. The second pattern modifies the solution of the first pattern but does not fail matching of the overall optional graph pattern.

If Opt(A, B) is an optional graph pattern, where A and B are graph patterns, then S is a solution of optional graph pattern if S is a solution of A and of B otherwise if S is a solution to A, but not to A and B.

The syntactic form:

{ optional { pattern } }

is defined to be

{ } optional { pattern }

5.5 Nested Optional Graph Patterns

Optional patterns can occur inside any group graph pattern, including a group graph pattern which itself is optional, forming a nested pattern. The outer optional graph pattern must match for any nested optional pattern to be matched.

Data:

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix vcard: <http://www.w3.org/2001/vcard-rdf/3.0#> .
 
_:a foaf:name "Alice" .
_:a foaf:mbox <mailto:alice@work.example> .
_:a vcard:N _:x .
_:x vcard:Family "Hacker" .
_:x vcard:Given "Alice" .
_:b foaf:name "Bob" .
_:b foaf:mbox <mailto:bob@work.example> .
_:b foaf:N _:z .
_:z vcard:Family "Hacker" .
_:e foaf:name "Ella" .
_:e vcard:N _:y .
_:y vcard:Given "Eleanor" .

Query:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX vcard: <http://www.w3.org/2001/vcard-rdf/3.0#>
SELECT ?foafName ?mbox ?gname ?fname
WHERE
 { ?x foaf:name ?foafName .
 OPTIONAL { ?x foaf:mbox ?mbox } .
 OPTIONAL { ?x vcard:N ?vc .
 ?vc vcard:Given ?gname .
 OPTIONAL { ?vc vcard:Family ?fname }
 }
 }

Query result:

foafName mbox gname fname
"Alice" <mailto:alice@work.example> "Alice" "Hacker"
"Bob" <mailto:bob@work.example>
"Ella" "Eleanor"

This query finds the name, optionally the mbox, and also the vCard given name; further, if there is a vCard Family name as well as the Given name, the query finds that as well.

By nesting the optional pattern involving vcard:Family, the query only reaches these if there is a vcard:N predicate. Here the expression is a simple triple pattern on vcard:N but it could be a complex graph pattern with value constraints.

6 Matching Alternatives

SPARQL provides a means of combining graph patterns so that one of several alternative graph patterns may match. If more than one of the alternatives matches, all the possible pattern solutions are found.

6.1 Joining Patterns with UNION

The UNION keyword is the syntax for pattern alternatives.

Data:

@prefix dc10: <http://purl.org/dc/elements/1.0/> .
@prefix dc11: <http://purl.org/dc/elements/1.1/> .
_:a dc10:title "SPARQL Query Language Tutorial" .
_:b dc11:title "SPARQL Protocol Tutorial" .
_:c dc10:title "SPARQL" .
_:c dc11:title "SPARQL (updated)" .

Query:

PREFIX dc10: <http://purl.org/dc/elements/1.0/>
PREFIX dc11: <http://purl.org/dc/elements/1.1/>
SELECT ?title
WHERE { { ?book dc10:title ?title } UNION { ?book dc11:title ?title } }

Query result:

title
"SPARQL Protocol Tutorial"
"SPARQL"
"SPARQL (updated)"
"SPARQL Query Language Tutorial"

This query finds titles of the books in the data, whether the title is recorded using Dublin Core properties from version 1.0 or version 1.1. If the application wishes to know how exactly the information was recorded, then the query:

PREFIX dc10: <http://purl.org/dc/elements/1.0/>
PREFIX dc11: <http://purl.org/dc/elements/1.1/>
SELECT ?x ?y
WHERE { { ?book dc10:title ?x } UNION { ?book dc11:title ?y } }
x y
"SPARQL (updated)"
"SPARQL Protocol Tutorial"
"SPARQL"
"SPARQL Query Language Tutorial"

will return results with the variables x or y bound depending on which way the query processor matches the pattern to the data. Note that, unlike an OPTIONAL pattern, if neither part of the UNION pattern matched, then the graph pattern would not match.

The UNION operator combines graph patterns, so more than one triple pattern can be given in each alternative possibility:

PREFIX dc10: <http://purl.org/dc/elements/1.1/>
PREFIX dc11: <http://purl.org/dc/elements/1.0/>
SELECT ?title ?author
WHERE { { ?book dc10:title ?title . ?book dc10:creator ?author }
 UNION
 { ?book dc11:title ?title . ?book dc11:creator ?author }
 }
author title
"Alice" "SPARQL Protocol Tutorial"
"Bob" "SPARQL Query Language Tutorial"

This query will only match a book if it has both a title and creator predicate from the same version of Dublin Core.

6.2 Union Matching – Formal Definition

Definition: Union Graph Pattern

A union graph pattern is a set of graph patterns GPi.

A union graph pattern matches a graph G with solution S if there is some GPi such that GPi matches G with solution S.

Query results involving a pattern containing GP1 and GP2 will include separate solutions for each match where GP1 and GP2 give rise to different sets of bindings.

7 RDF Dataset

The RDF data model expresses information as graphs, comprising of triples with subject, predicate and object. Many RDF data stores hold multiple RDF graphs, and record information about each graph, allowing an application to make queries that involve information from more than one graph.

A SPARQL query is executed against an RDF Dataset which represents such a collection of graphs. Different parts of the query may be matched against different graphs as described in the next section. There is one graph, the default graph, which does not have a name, and zero or more named graphs, each identified by IRI.

Definition: RDF Dataset

An RDF dataset is a set:
{ G, (<u1>, G1), (<u2>, G2), . . . (<un>, Gn) }
where G and each Gi are graphs, and each <ui> is an IRI. Each <ui> is distinct.

G is called the default graph. (<u1>, Gi) are called named graphs.

There may be no named graphs.

A graph pattern P, where P is not an RDF Dataset Graph Pattern, matches an RDF dataset DS with solution S if P matches G (the default graph of DS) with solution S.

In the previous sections, all queries have been shown executed against a single, default graph. A query does not need to involve the default graph; the query can just involve matching named graphs.

Definition: RDF Dataset Graph Pattern

If D is a dataset {G, (<u1> G1), ...}, and P is a graph pattern then S is a pattern solution of GRAPH(g, P) if either of:

  1. g is an IRI where g = <ui> for some i, and S is pattern solution of P on dataset {Gi, (<u1> G1), ...}
  2. g is a variable, S maps the variable g to <ui> and S is a pattern solution of P on {Gi, (<u1> G1), ...}

7.1 Examples of RDF Datasets

The definition of RDF Dataset does not restrict the relationships of named and default graphs. Two useful arrangements are:

Example 1:

# Default graph
@prefix dc: <http://purl.org/dc/elements/1.1/> .
<http://example.org/bob> dc:publisher "Bob" .
<http://example.org/alice> dc:publisher "Alice" .
# Named graph: http://example.org/bob
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
_:a foaf:name "Bob" .
_:a foaf:mbox <mailto:bob@oldcorp.example.org> .
# Named graph: http://example.org/alice
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
_:a foaf:name "Alice" .
_:a foaf:mbox <mailto:alice@work.example.org> .

In this example, the default graph contains the names of the publishers of two named graphs. The triples in the named graphs are not visible in the default graph in this example.

Example 2:

RDF data can be combined by RDF merge of graphs so that the default graph can be made to include the RDF merge of some or all of the information in the named graphs.

In this next example, the named graphs contain the same information as before. The RDF dataset includes an RDF merge of the named graphs in the default graph, re-labeling blank nodes to keep them distinct.

# Default graph
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
_:x foaf:name "Bob" .
_:x foaf:mbox <mailto:bob@oldcorp.example.org> .
_:y foaf:name "Alice" .
_:y foaf:mbox <mailto:alice@work.example.org> .
# Named graph: http://example.org/bob
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
_:a foaf:name "Bob" .
_:a foaf:mbox <mailto:bob@oldcorp.example.org> .
# Named graph: http://example.org/alice
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
_:a foaf:name "Alice" .
_:a foaf:mbox <mailto:alice@work.example> .

8 Querying the Dataset

When querying a collection of graphs, the GRAPH keyword is used to match patterns against named graphs. This is by either using an IRI to select a graph or using a variable to range over the IRIs naming graphs.

The following two graphs will be used in examples:

# Named graph: http://example.org/foaf/aliceFoaf
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
_:a foaf:name "Alice" .
_:a foaf:mbox <mailto:alice@work.example> .
_:a foaf:knows _:b .
_:b foaf:name "Bob" .
_:b foaf:mbox <mailto:bob@work.example> .
_:b foaf:nick "Bobby" .
_:b rdfs:seeAlso <http://example.org/foaf/bobFoaf> .
<http://example.org/foaf/bobFoaf>
 rdf:type foaf:PersonalProfileDocument .
# Named graph: http://example.org/foaf/bobFoaf
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
_:z foaf:mbox <mailto:bob@work.example> .
_:z rdfs:seeAlso <http://example.org/foaf/bobFoaf> .
_:z foaf:nick "Robert" .
<http://example.org/foaf/bobFoaf>
 rdf:type foaf:PersonalProfileDocument .

8.1 Accessing Graph Names

The query below matches the graph pattern on each of the named graphs in the dataset and forms solutions which have the src variable bound to IRIs of the graph being matched.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?src ?bobNick
WHERE
 {
 GRAPH ?src
 { ?x foaf:mbox <mailto:bob@work.example> .
 ?x foaf:nick ?bobNick
 }
 }

The query result gives the name of the graphs where the information was found and the value for Bob's nick:

src bobNick
<http://example.org/foaf/aliceFoaf> "Bobby"
<http://example.org/foaf/bobFoaf> "Robert"

8.2 Restricting by Graph IRI

The query can restrict the matching applied to a specific graph by supplying the graph IRI. This query looks for Bob's nick as given in the graph http://example.org/foaf/bobFoaf.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX data: <http://example.org/foaf/>
SELECT ?nick
WHERE
 {
 GRAPH data:bobFoaf {
 ?x foaf:mbox <mailto:bob@work.example> .
 ?x foaf:nick ?nick }
 }

which yields a single solution:

nick
"Robert"

8.3 Restricting by Bound Variables

A variable used in the GRAPH clause may also be used in another GRAPH clause or in a graph pattern matched against the default graph in the dataset.

This can be used to find information in one part of a query, and thus restrict the graphs matched in another part of the query. The query below uses the graph with IRI http://example.org/foaf/aliceFoaf to find the profile document for Bob; it then matches another pattern against that graph. The pattern in the second GRAPH clause finds the blank node (variable ?w) for the person with the same mail box (given by variable mbox) as found in the first GRAPH clause (variable ?whom), because the blank node used to match for variable whom from Alice's FOAF file is not the same as the blank node in the profile document (they are in different graphs).

PREFIX data: <http://example.org/foaf/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT ?mbox ?nick ?ppd
WHERE
{
 GRAPH data:aliceFoaf
 {
 ?alice foaf:mbox <mailto:alice@work.example> ;
 foaf:knows ?whom .
 ?whom foaf:mbox ?mbox ;
 rdfs:seeAlso ?ppd .
 ?ppd a foaf:PersonalProfileDocument .
 } .
 GRAPH ?ppd
 {
 ?w foaf:mbox ?mbox ;
 foaf:nick ?nick 
 }
} 
mbox nick ppd
<mailto:bob@work.example> "Robert" <http://example.org/foaf/bobFoaf>

Any triple in Alice's FOAF file giving Bob's nick is not used to provide a nick for Bob because the pattern involving variable nick is restricted by ppd to a particular Personal Profile Document.

8.4 Named and Default Graphs

Query patterns can involve both the default graph and the named graphs. In this example, an aggregator has read in a web resource on two different occasions. Each time a graph is read into the aggregator, it is given an IRI by the local system. The graphs are nearly the same but the email address for "Bob" has changed.

The default graph is being used to record the provenance information and the RDF data actually read is kept in two separate graphs, each of which is given a different IRI by the system. The RDF dataset consists of two, named graphs and the information about them.

RDF Dataset:

# Default graph
@prefix dc: <http://purl.org/dc/elements/1.1/> .
<urn:x-local:graph1> dc:publisher "Bob" .
<urn:x-local:graph1> dc:date "2004年12月06日"^^xsd:date .
<urn:x-local:graph2> dc:publisher "Bob" .
<urn:x-local:graph2> dc:date "2005年01月10日"^^xsd:date .
# Graph: locally allocated IRI: tag:example.org,2005年06月06日:graph1
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
_:a foaf:name "Alice" .
_:a foaf:mbox <mailto:alice@work.example> .
_:b foaf:name "Bob" .
_:b foaf:mbox <mailto:bob@oldcorp.example.org> .
# Graph: locally allocated IRI: tag:example.org,2005年06月06日:graph2
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
_:a foaf:name "Alice" .
_:a foaf:mbox <mailto:alice@work.example> .
_:b foaf:name "Bob" .
_:b foaf:mbox <mailto:bob@newcorp.example.org> .

This query finds email addresses, detailing the name of the person and the date the information was discovered.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
SELECT ?name ?mbox ?date
WHERE
 { ?g dc:publisher ?name ;
 dc:date ?date .
 GRAPH ?g 
 { ?person foaf:name ?name ; foaf:mbox ?mbox }
 }
The results show that the email address for "Bob" has changed.
name mbox date
"Bob" <mailto:bob@oldcorp.example.org> "2004年12月06日"^^xsd:date
"Bob" <mailto:bob@newcorp.example.org> "2005年01月10日"^^xsd:date

The IRI for the date datatype has been abbreviated in the results for clarity.

9 Specifying RDF Datasets

A SPARQL query may specify the dataset to be used for matching. The FROM clauses give IRIs that the query processor can use to create the default graph and the FROM NAMED clause can be used to specify named graphs.

A query processor may use these IRIs in any way to associate an RDF Dataset with a query. For example, it could use IRIs to retrieve documents, parse them and use the resulting triples as one of the graphs; alternatively, it might only service queries that specify IRIs of graphs that it already has stored.

The FROM and FROM NAMED keywords allow a query to specify an RDF dataset by reference; they indicate that the dataset should include graphs that are obtained from representations of the resources identified by the given IRIs (i.e. the absolute form of the given IRI references). The dataset resulting from a number of FROM and FROM NAMED clauses is:

If a query provides such a dataset description, then it is used in place of any dataset that the query service would use if no dataset description is provided in a query.

9.1 Specifying the Default Graph

The FROM clause contains an IRI that indicates the graph to be used to form the default graph. This does not automatically put the graph in as a named graph; a query can do this by also specifying the graph in the FROM NAMED clause.

In this example, there is a single default graph:

# Default graph
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
_:a foaf:name "Alice" .
_:a foaf:mbox <mailto:alice@work.example> .
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name
FROM <http://example.org/foaf/aliceFoaf>
WHERE { ?x foaf:name ?name }
name
"Alice"

If a query provides more than one FROM clause, providing more than IRI to indicate the default graph, then the default graph is based on the RDF merge of the graphs obtained from representations of the resources identified by the given IRIs.

9.2 Specifying Named Graphs

A query can supply IRIs for the named graphs in the RDF Dataset using the FROM NAMED clause. Each IRI is used to provide one, named graph in the RDF Dataset.

# Graph: http://example.org/bob
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
_:a foaf:name "Bob" .
_:a foaf:mbox <mailto:bob@oldcorp.example.org> .
# Graph: http://example.org/alice
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
_:a foaf:name "Alice" .
_:a foaf:mbox <mailto:alice@work.example> .
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?src ?name
FROM NAMED <http://example.org/alice>
FROM NAMED <http://example.org/bob> 
WHERE
{ GRAPH ?src { ?x foaf:name ?name } }
src nick
<http://example.org/bob> "Robert"
<http://example.org/alice> "Bobby"

The FROM NAMED syntax suggests that the IRI identifies the corresponding graph, but actually the relationship between a URI and a graph in an RDF dataset is indirect. the IRI identifies a resource, and the resource is represented by a graph (or, more precisely: by a document that serializes a graph). For further details see [20].

9.3 Combining FROM and FROM NAMED

The FROM clause and FROM NAMED clauses can be used in the same query.

# Default graph
@prefix dc: <http://purl.org/dc/elements/1.1/> .
<http://example.org/bob> dc:publisher "Bob" .
<http://example.org/alice> dc:publisher "Alice" .
# Named graph: http://example.org/bob
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
_:a foaf:name "Bob Hacker" .
_:a foaf:mbox <mailto:bob@oldcorp.example.org> .
# Named graph: http://example.org/alice
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
_:a foaf:name "Alice Hacker" .
_:a foaf:mbox <mailto:alice@work.example.org> .
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
SELECT ?who ?g ?mbox
FROM <http://example.org/dft.ttl>
FROM NAMED <http://example.org/alice>
FROM NAMED <http://example.org/bob>
WHERE
{
 ?g dc:publisher ?who .
 GRAPH ?g { ?x foaf:mbox ?mbox }
}
who g mbox
"Bob Hacker" <http://example.org/bob> <mailto:bob@oldcorp.example.org>
"Alice Hacker" <http://example.org/alice> <mailto:alice@work.example>

This query finds the mbox together, with the information in the default graph about the publisher. <http://example.org/dft.ttl> is just the IRI used to form the default graph, not it's name.

10 Query Result Forms

SPARQL has four query result forms. These result forms use the solutions from pattern matching to form result sets or RDF graphs. The query forms are:

SELECT
Returns all, or a subset of, the variables bound in a query pattern match.
CONSTRUCT
Returns an RDF graph constructed by substituting variables in a set of triple templates.
DESCRIBE
Returns an RDF graph that describes the resources found.
ASK
Returns a boolean indicating whether a query pattern matches or not.

The SPARQL Variable Binding Results XML Format can be used to serialize result sets from a SELECT query or the boolean result of an ASK query.

10.1 Solution Sequences and Result Forms

Query patterns generate an unordered collection of solutions, each solution being a function from variables to RDF terms. These solutions are then treated as a sequence, initially in no specific order; any sequence modifiers are then applied to create another sequence. Finally, this latter sequence is used to generate one of the SPARQL result forms.

Definition: Solution Sequence

A solution sequence S is a list of solutions.

S = ( S1, S2, . . . , Sn)

The solution sequence from matching the query pattern is an unordered collection formed from the solutions of the query pattern.

Definition: Solution Sequence Modifier

A solution sequence modifier is one of:

If SM is set of modifiers, and QS is the collection of solutions of a query, we write SM(QS) for the sequence formed by applying SM to the solution sequence formed from QS.

Definition: Result Forms

The result form of a query is one of

The elements of a sequence of solutions can be modified by:

  1. Projection
  2. DISTINCT: ensure solutions in the sequence are unique.
  3. ORDER BY: put the solutions in order
  4. LIMIT: restrict the number of solutions processed for query results
  5. OFFSET: control where the solutions processed start from in the overall sequence of solutions.

The effect of applying these controls is as if they are applied in the order given.

Projection

The solution sequence can be transformed into one involving only a subset of the variables. For each solution in the sequence, a new solution is formed using a specified selection of the variables.

Definition: Projection

The projection of solution QS over a set of variables VS is the solution
project(QSi, VS) = { (v, QSi(v)) | v in VS }

For a solution sequence S = ( S1, S2, . . . , Sn) and a finite set of variables VS,
project(S, VS) = { (project(Si, VS) | i = 1,2, . . . n }

The following example shows a query to extract just the names of people described in an RDF graph using FOAF properties.

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
_:a foaf:name "Alice" .
_:a foaf:mbox <mailto:alice@work.example> .
_:b foaf:name "Bob" .
_:b foaf:mbox <mailto:bob@work.example> .
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name 
WHERE
 { ?x foaf:name ?name }
name
"Bob"
"Alice"

DISTINCT

The solution sequence can be modified by adding the DISTINCT keyword which ensures that every combination of variable bindings (i.e. each solution) in the sequence is unique.

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
_:a foaf:name "Alice" .
_:a foaf:mbox <mailto:alice@org> .
_:z foaf:name "Alice" .
_:z foaf:mbox <mailto:smith@work> .
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT DISTINCT ?name WHERE { ?x foaf:name ?name }
name
"Alice"

If DISTINCT and LIMIT or OFFSET are specified, then duplicates are eliminated before the limit or offset is applied.

Definition: Distinct Solution Sequence

A Distinct Solution Sequence has no two solutions the same.

For a solution sequence S = ( S1, S2, . . . , Sn), then write set(S) is the set of solution sequences in S.

distinct(S) = (Si | Si != Sj for all i != j) and set(distinct(S)) = set(S)

ORDER BY

The ORDER BY clause takes a solution sequence and applies ordering conditions. An ordering condition can be a variable or a function call. The direction of ordering is ascending by default. It can be explicitly set to ascending or descending by enclosing the condition in ASC() or DESC() respectively. If multiple conditions are given, then they are applied in turn until one gives the indication of the ordering.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name
WHERE { ?x foaf:name ?name }
ORDER BY ?name
PREFIX : <http://example.org/ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> 
SELECT ?name
WHERE { ?x foaf:name ?name ; :empId ?emp }
ORDER BY DESC(?emp)
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name
WHERE { ?x foaf:name ?name ; :empId ?emp }
ORDER BY ?name DESC(?emp)

Using ORDER BY on a solution sequence for a result form other than SELECT has no direct effect because only SELECT returns a sequence of results. In combination with LIMIT and OFFSET, it can be used to return partial results.

Definition: Ordered Solution Sequence

A ordered solution sequence is a solution sequence where the sequence is partially ordered with respect to some ordering condition.

A solution sequence S = ( S1, S2, . . . , Sn) is ordered with respect to an ordering condition C if, for Si, SJ, then i < j if C orders Si before Sj.

An ordering condition need not give a total ordering of a solution sequence.

If the ordering condition is a named variable, RDF Literals are compared with the "<" operator (see below) where possible. SPARQL defines a fixed, arbitrary order between some kinds of RDF terms that would not otherwise be ordered. This arbitrary order is necessary to provide slicing of query solutions by use of LIMIT and OFFSET.

  1. (Lowest) no value assigned to the variable or expression in this solution.
  2. Blank nodes
  3. IRIs
  4. RDF literals
  5. A plain literal before an RDF literal with type xsd:string of the same lexical form.

IRIs are ordered by comparing the character strings making up each IRI.

If the ordering criteria do not specify the order of values, then the ordering in the solution sequence is undefined. However, an implementation must consistently impose the same order so that applying LIMIT or OFFSET will not miss any solutions.

Ordering a sequence of solutions always results in a sequence with the same number of solutions in it, even if the ordering criteria does not differentiate between two solutions.

LIMIT

The LIMIT form puts an upper bound on the number of solutions returned. If the number of actual solutions is greater than the limit, then at most the limit number of solutions will be returned.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name
WHERE { ?x foaf:name ?name }
LIMIT 20

A limit of 0 would cause no results to be returned. A limit may not be negative.

Definition: Limited Solution Sequence

A Limited Solution Sequence has at most a given, fixed number of members.

The limit of solution sequence S = (S1, S2, . . . , Sn) is

limit(S,m) =
(S1, S2, . . . , Sm) if n > m
(S1, S2, . . . , Sn) if n <= m

OFFSET

OFFSET causes the solutions generated to start after the specified number of solutions. An OFFSET of zero has no effect.

The order in which solutions are returned is initially undefined. Using LIMIT and OFFSET to select different subsets of the query solutions will not be useful unless the order is made predictable by using ORDER BY.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name
WHERE { ?x foaf:name ?name }
ORDER BY ?name
LIMIT 5
OFFSET 10

Definition: Offset Solution Sequence

An Offset Solution Sequence with respect to another solution sequence S, is one which starts at a given index of S.

For solution sequence S = (S1, S2, . . . , Sn), the offset solution sequence
offset(S, k), k >= 0 is
(Sk, Sk+1, . . ., Sn) if n >= k
(), the empty sequence, if k > n

10.2 Selecting Variables

The SELECT form of results returns the variables directly. The syntax SELECT * is an abbreviation that selects all of the named variables.

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
_:a foaf:name "Alice" .
_:a foaf:knows _:b .
_:a foaf:knows _:c .
_:b foaf:name "Bob" .
_:c foaf:name "Clare" .
_:c foaf:nick "CT" .
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name X ?nameY ?nickY
WHERE
 { ?x foaf:knows ?y ;
 foaf:name ?nameX .
 ?y foaf:name ?nameY .
 OPTIONAL { ?y foaf:nick ?nickY } 
 }
nameX nameY nickY
"Alice" "Bob"
"Alice" "Clare" "CT"

Results can be thought of as a table or result set, with one row per query solution. Some cells may be empty because a variable is not bound in that particular solution.

Result sets can be accessed by the local API but also can be serialized into either XML or an RDF graph. The SPARQL Query Results XML Format form of this result set gives:

<?xml version="1.0"?>
<sparql
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:xs="http://www.w3.org/2001/XMLSchema#"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://www.w3.org/2005/06/sparqlResults" >
 <head>
 <variable name="nameX"/>
 <variable name="nameY"/>
 <variable name="nickY"/>
 </head>
 <results>
 <result>
 <binding name="nameX">
 <literal>Alice</literal>
 </binding>
 <binding name="nameY">
 <literal>Bob</literal>
 </binding>
 <binding name="nickY">
 <unbound/>
 </binding>
 </result>
 <result>
 <binding name="nameX">
 <literal>Alice</literal>
 </binding>
 <binding name="nameY">
 <literal>Clare</literal>
 </binding>
 <binding name="nickY">
 <literal>CT</literal>
 </binding>
 </result>
 </results>
</sparql>

Definition: SELECT

Given Q = (GP, DS, SM, SELECT VS) where

then, if QS is the set of solutions formed by matching dataset DS with graph pattern GP, the SELECT result is project(SM(QS), VS)

10.3 Constructing an Output Graph

The CONSTRUCT result form returns a single RDF graph specified by a graph template. The result is an RDF graph formed by taking each query solution in the solution sequence, substituting for the variables into the graph template and combining the triples into a single RDF graph by set union.

If any such instantiation produces a triple containing an unbound variable, or an illegal RDF construct (such as a literal in subject or predicate position), then that triple is not included in the RDF graph, and a warning may be generated.

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
_:a foaf:name "Alice" .
_:a foaf:mbox <mailto:alice@example.org> .
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX vcard: <http://www.w3.org/2001/vcard-rdf/3.0#>
CONSTRUCT { <http://example.org/person#Alice> vcard:FN ?name }
WHERE { ?x foaf:name ?name }
creates vcard properties from the FOAF information:
@prefix vcard: <http://www.w3.org/2001/vcard-rdf/3.0#> .

<http://example.org/person#Alice> vcard:FN "Alice" .

Templates with Blank Nodes

A template can create an RDF graph containing blank nodes. The blank node labels are scoped to the template for each solution. If the same label occurs twice in a template, then there will be one blank node created for each query solution but there will be different blank nodes across triples generated by different query solutions.

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
_:a foaf:givenname "Alice" .
_:a foaf:family_name "Hacker" .
_:b foaf:firstname "Bob" .
_:b foaf:surname "Hacker" .
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX vcard: <http://www.w3.org/2001/vcard-rdf/3.0#>
CONSTRUCT { ?x vcard:N _:v .
 _:v vcard:givenName ?gname .
 _:v vcard:familyName ?fname }
WHERE
 {
 { ?x foaf:firstname ?gname } UNION { ?x foaf:givenname ?gname } .
 { ?x foaf:surname ?fname } UNION { ?x foaf:family_name ?fname } .
 } 
creates vcard properties corresponding to the FOAF information:
@prefix vcard: <http://www.w3.org/2001/vcard-rdf/3.0#> .

_:v1 vcard:N _:x .
_:x vcard:givenName "Alice" .
_:x vcard:familyName "Hacker" .

_:v2 vcard:N _:z .
_:z vcard:givenName "Bob" .
_:z vcard:familyName "Hacker" .

The use of variable ?x in the template, which in this example will be bound to blank nodes (which have labels _:a and _:b in the data) causes different blank node labels (_:v1 and _:v2) as shown by the results.

Accessing Graphs in the RDF Dataset

Using CONSTRUCT it is possible to extract parts or the whole of graphs from the target RDF dataset. This first example returns the graph (if it is in the dataset) with IRI label http://example.org/myGraph; otherwise, it returns an empty graph.

CONSTRUCT { ?s ?p ?o } WHERE { GRAPH <http://example.org/myGraph> { ?s ?p ?o } . }

The access to the graph can be conditional on other information. Suppose the default graph contains metadata about the named graphs in the dataset, then a query like the following one can extract one graph based on information about the named graph:

PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX app: <http://example.org/ns#>
CONSTRUCT { ?s ?p ?o } WHERE
 {
 GRAPH ?g { ?s ?p ?o } .
 { ?g dc:publisher <http://www.w3.org/> } .
 { ?g dc:date ?date } .
 FILTER ( app:myDate(?date)> "2005-02-28T00:00:00Z"^^xsd:dateTime ) .
 }

where app:myDate identified an extension function to turn the data format into an xsd:dateTime RDF Term.

Definition: Graph Template

A graph template is a set of triple patterns.

If T = { tj | j = 1,2 ... m } is a graph template and S is a solution then S(tj) is an RDF triple if all variables in tj are in the domain of S. S(tj) is empty otherwise.

Write S(T) for the union of S(tj).

Definition: CONSTRUCT

Let Q = (GP, DS, SM, CONSTRUCT T) where

then, if QS is the set of solutions formed by matching dataset DS with graph pattern GP, then write SM(QS) = { Si | i = 1,2 ... n }.

The CONSTRUCT result is the RDF graph formed by the RDF merge of each Si(T).

Solution Modifiers and CONSTRUCT

The solution modifiers of a query affect the results of a CONSTRUCT query. In this example, the output graph from the CONSTRUCT template is formed from just 2 of the solutions from graph pattern matching. The query outputs a graph with the names of the people with the top 2 sites, rated by hits. The triples in the RDF graph are not ordered.

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix site: <http://example.org/stats#> .
_:a foaf:name "Alice" .
_:a site:hits 2349 .
_:a foaf:name "Bob" .
_:a site:hits 105 .
_:a foaf:name "Eve" .
_:a site:hits 181 .
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX site: <http://example.org/stats#>
CONSTRUCT { [] foaf:name ?name }
WHERE
{ [] foaf:name ?name ;
 site:hits ?hits .
}
ORDER BY ?hits
LIMIT 2
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
_:x foaf:name "Bob" .
_:y foaf:name "Alice" .

10.4 Descriptions of Resources

The DESCRIBE form returns a single result RDF graph containing RDF data about resources. This data is not prescribed by a SPARQL query, where the query client would need to know the structure of the RDF in the data source, but, instead, is determined by the SPARQL query processor.

The query pattern is used to create a result set. The DESCRIBE form takes each of the resources identified in a solution, together with any resources directly named by IRI, and assembles a single RDF graph by taking a "description" from the target knowledge base. The description is determined by the query processor implementation and should provide a useful description of the resource, where the meaning of "useful" is determined by the information publisher.

If a data source has no information about a resource, no RDF triples are added to the result graph but the query does not fail.

Explicit IRIs

The DESCRIBE clause itself can take IRIs to identify the resources. The simplest DESCRIBE query is just an IRI in the DESCRIBE clause:

DESCRIBE <http://example.org/>

Identifying Resources

The resources can also be a query variable from a result set. This enables description of resources whether they are identified by IRI or by blank node in the dataset:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
DESCRIBE ?x
WHERE { ?x foaf:mbox <mailto:alice@org> }

The property foaf:mbox is defined as being an inverse function property in the FOAF vocabulary. If treated as such, this query will return information about at most one person. If, however, the query pattern has multiple solutions, the RDF data for each is the union of all RDF graph descriptions.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
DESCRIBE ?x
WHERE { ?x foaf:name "Alice" }

More than one IRI or variable can be given:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
DESCRIBE ?x ?y <http://example.org/>
WHERE {?x foaf:knows ?y}

Descriptions of Resources

The RDF returned is the determined by the information publisher and may be dependent on the query processor implementation, data source and local configuration. It should be the useful information the server has about a resource. It may include information about other resources: the RDF data for a book may also include details about the author.

A simple query such as

PREFIX ent: <http://myorg.example/employees#> 
DESCRIBE ?x WHERE { ?x ent:employeeId "1234" }

might return a description of the employee and some other potentially useful details:

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix vcard: <http://www.w3.org/2001/vcard-rdf/3.0> .
@prefix myOrg: <http://myorg.example/employees#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix owl: <http://www.w3.org/2002/07/owl#>
_:a myOrg:employeeId "1234" ;
 foaf:mbox_sha1sum "ABCD1234" ;
 vcard:N
 [ vcard:Family "Smith" ;
 vcard:Given "John" ] .
foaf:mbox_sha1sum rdf:type owl:InverseFunctionalProperty .

which includes the blank node closure for the vcard vocabulary vcard:N. For a vocabulary such as FOAF, where the resources are typically blank nodes, returning sufficient information to identify a node such as the InverseFunctionalProperty foaf:mbox_sha1sum as well information which as name and other details recorded would be appropriate. In the example, the match to the WHERE clause was returned but this is not required.

Definition: DESCRIBE

Let Q = (GP, DS, SM, DESCRIBE V) where

then, if QS is the set of solutions formed by matching dataset DS with graph pattern GP, the DESCRIBE result is an RDF graph formed by information relating elements of
U union project(SM(QS), VS).

This definition intentionally does not proscribe the nature of the relevant information.

10.5 Asking "yes or no" questions

Applications can use the ASK form to test whether or not a query pattern has a solution. No information is returned about the possible query solutions, just whether the server can find one or not.

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
_:a foaf:name "Alice" .
_:a foaf:homepage <http://work.example.org/alice/> .
_:b foaf:name "Bob" .
_:b foaf:mbox <mailto:bob@work.example> .
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
ASK { ?x foaf:name "Alice" }
yes

The SPARQL Query Results XML Format form of this result set gives:

<?xml version="1.0"?>
<sparql xmlns="http://www.w3.org/2005/06/sparqlResults">
 <head></head>
 <results>
 <boolean>true</boolean>
 </results>
</sparql>

On the same data, the following returns no match because Alice's mbox is not mentioned.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
ASK { ?x foaf:name "Alice" ;
 foaf:mbox <mailto:alice@work.example> }
no

Definition: ASK

Let Q = (GP, DS, SM, ASK) where

and QS is the set of solutions formed by matching dataset DS with graph pattern GP then the ASK result is true if SM(QS) is not empty, otherwise it is false.

11 Testing Values

SPARQL FILTERs restrict the set of solutions according to the given expression. Specifically, FILTERs eliminate any solutions that, when substituted into the expression, result in either an effective boolean value of false or produce a type error. Effective boolean values are defined in section 11.2.1.1 Effective Boolean Value, type error is defined in XQuery 1.0: An XML Query Language [18] section 2.3.1, Kinds of Errors.

SPARQL expressions are constructed according to the grammar and provide access to named functions and syntactically constructed operations. The operands of these functions and operators are the subset of XML Schema DataTypes {xsd:string, xsd:decimal, xsd:double, xsd:dateTime} and types derived from xsd:decimal. The SPARQL operations are listed in table 11.1 and are associated with their productions in the grammar. In addition, SPARQL imports a subset of the XPath casting functions, listed in table 11.2, which are invokable by name within a SPARQL query. These functions and operators are taken from the XQuery 1.0 and XPath 2.0 Functions and Operators [17].

As described above, RDF Terms are made of IRIs, Literals and Blank Nodes. RDF Literals may have datatypes in the instance data:

@prefix a: <http://www.w3.org/2000/10/annotation-ns#> .
@prefix dc: <http://purl.org/dc/elements/1.1/> .
_:a a:annotates <http://www.w3.org/TR/rdf-sparql-query/> .
_:a dc:date "2004年12月31日T19:00:00-05:00" .
_:b a:annotates <http://www.w3.org/TR/rdf-sparql-query/> .
_:b dc:date "2004年12月31日T19:01:00-05:00"^^<http://www.w3.org/2001/XMLSchema#dateTime> .

The first dc:date arc has no type information. The second is tagged with the type xsd:dateTime. SPARQL operators compare the values of typed literals:

PREFIX a: <http://www.w3.org/2000/10/annotation-ns#>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
SELECT ?annot
WHERE { ?annot a:annotates <http://www.w3.org/TR/rdf-sparql-query/> .
 ?annot dc:date ?date .
 FILTER ( ?date < "2005年01月01日T00:00:00Z"^^xsd:dateTime ) }

Literals may be cast to typed literals to use the SPARQL operators.

... FILTER ( xsd:dateTime(?date) < xsd:dateTime("2005年01月01日T00:00:00Z") ) ...

Namespaces:

The namespace for XPath functions that are directly available by name is http://www.w3.org/2004/07/xpath-functions . The associated namespace prefix used in this document is fn:. XPath operators are named with the prefix op:, XML Schema datatypes with the prefix op:, and types of RDF terms with the prefix r:. SPARQL operators are named with the prefix sop:.

11.1 Operand Data Types

SPARQL defines a subset of the XPath functions and operators with operands of the following XML Schema datatypes:

  1. xs:string
  2. xs:double
  3. xs:float
  4. xs:decimal
  5. xs:integer
  6. xs:dateTime

In addition, SPARQL introduces additional operators which operate on RDF terms. RDF terms are identified by r:term and the constituant subclasses:

11.1.1 Type Promotion

XPath defines a set of Numeric Type Promotions. Numeric operators are defined for the following three primitive XML Schema numeric types:

These invoke XQuery's numeric type promotion to cast function arguments to the appropriate type. In summary: each of the numeric types is promoted to any type earlier in the above ordered list when used as an argument to function expecting that higher type. When an argument is promoted, the value is cast to the expected type. For instance, a "7"^^xs:decimal will be converted to an "7.0E0"^^xs:double when passed to an argument expecting an xs:double. Promotion does not change the bindings of variables.

The operators defined below that take numeric arguments expect all arguments to be the same type. This is accomplished by promoting the argument with the lower type to the same type as the other argument. For example, "7"^^xs:decimal + "6.5"^^xs:float would call op:numeric-add("7"^^xs:float, "6.5"^^xs:float). In addition, any r:Literal may be cast to xs:string or xs:numeric when used as an argument to an operator expecting that type.

XML Schema [] defines a set of types derived from decimal: integer; nonPositiveInteger; negativeInteger; long; int; short; byte; nonNegativeInteger; unsignedLong; unsignedInt; unsignedShort; unsignedByte and positiveInteger. These are all treated as decimals for arithmetic operations in FILTERs. SPARQL does not specifically require integrity checks on derived subtypes. SPARQL has no numeric type test operators so the distinction between a primitive type and a type derived from that primitive type is unobservable.

11.2 SPARQL Functions and Operators

SPARQL provides a subset of the functions and operators defined by XQuery Operator Mapping. XQuery 1.0 section 2.2.3 Expression Processing describes the invocation of XPath functions. The following rules accommodate the differences in the data and execution models between XQuery and SPARQL:

11.2.1 Invocation

SPARQL defines a syntax for invoking functions and operators on a list of arguments. These are invoked as follows:

If any of these steps fails, the invocation generates an error. The effects of type errors are defined in SPARQL Functions and Operators.

11.2.1.1 Effective Boolean Value

When a operand is coerced to xs:boolean through invoking a function that takes a xs:boolean argument, the following rules apply:

The result is TRUE unless any of the following are true:

Table 11.1 Operator Mapping

The SPARQL grammar identifies a set of operators (for instance, &&, *, isURI) used to construct constraints. The following table associates each of these grammatical productions with an operator defined by either the XQuery Operator Mapping or the additional SPARQL operators specified in section 11.2.2.

Some of the operators are associated with nested function expressions, e.g. fn:not(op:numeric-equal(A, B)). Note that per the xpath definitions, fn:not and op:numeric-equal return an error if their argument is an error.

SPARQL Operators
Operator Type(A)Type(B)FunctionResult type
XQuery Connectives
A || B xs:booleanxs:booleansop:logical-or(A, B)xs:boolean
Returns a boolean: TRUE if either A or B is true, else FALSE.
A && B xs:booleanxs:booleansop:logical-and(A, B)xs:boolean
Returns a boolean: TRUE if both A and B are true, else FALSE.
XPath Tests
A = B xs:stringxs:stringop:numeric-equal(fn:compare(A, B), 0)xs:boolean
A != B xs:stringxs:stringfn:not(op:numeric-equal(fn:compare(A, B), 0))xs:boolean
A = B numericnumericop:numeric-equal(A, B)xs:boolean
A = B xs:dateTimexs:dateTimeop:dateTime-equal(A, B)xs:boolean
A != B numericnumericfn:not(op:numeric-equal(A, B))xs:boolean
A != B xs:dateTimexs:dateTimefn:not(op:dateTime-equal(A, B))xs:boolean
A < B numericnumericop:numeric-less-than(A, B)xs:boolean
A < B xs:dateTimexs:dateTimeop:dateTime-less-than(A, B)xs:boolean
A > B numericnumericop:numeric-greater-than(A, B)xs:boolean
A > B xs:dateTimexs:dateTimeop:dateTime-greater-than(A, B)xs:boolean
A <= B numericnumericsop:logical-or(op:numeric-less-than(A, B), op:numeric-equal(A, B))xs:boolean
A <= B xs:dateTimexs:dateTimefn:not(op:dateTime-greater-than(A, B))xs:boolean
A >= B numericnumericsop:logical-or(op:numeric-greater-than(A, B), op:numeric-equal(A, B))xs:boolean
A >= B xs:dateTimexs:dateTimefn:not(op:dateTime-less-than(A, B))xs:boolean
A * B numericnumericop:numeric-multiply(A, B)numeric
A / B numericnumericop:numeric-divide(A, B)numeric; but xs:decimal if both operands are xs:integer
A + B numericnumericop:numeric-add(A, B)numeric
A - B numericnumericop:numeric-subtract(A, B)numeric
! A numericN/Afn:not(A)xs:boolean
+ A numericN/Aop:numeric-unary-plus(A)numeric
- A numericN/Aop:numeric-unary-minus(A)numeric
SPARQL Tests, defined in section 11.2.2
A = B r:termr:termsop:RDFterm-equal(A, B)xs:boolean
A != B r:termr:termfn:not(sop:RDFterm-equal(A, B))xs:boolean
BOUND(A) variableN/Asop:isBound(A)xs:boolean
isURI(A) variableN/Asop:isURI(A)xs:boolean
isBLANK(A) variableN/Asop:isBlank(A)xs:boolean
isLITERAL(A) variableN/Asop:isLiteral(A)xs:boolean
REGEX(STRING, PATTERN [, FLAGS]) xs:stringxs:string [, xs:string]fn:matches(STRING, PATTERN)
fn:matches(STRING, PATTERN, FLAGS)
xs:boolean
The fn:matches function is defined in XPath. Its use in SPARQL and an example invocation are described in section 11.2.3.6.
SPARQL Casts
STR(A) rdf:uri or rdf:literalN/Asop:str(A)xs:string
LANG(A) rdf:literalN/Asop:lang(A)xs:string
DATATYPE(A) rdf:literalN/Asop:datatype(A)rdf:uri

11.2.3 Operators introduced in SPARQL

This section defines the operators introduced by the SPARQL Query language. The names of the operators are prefixed with sop:. The examples show the behavior of the operators as invoked by the appropriate grammatical constructs.

11.2.3.1 sop:RDFterm-equal

Returns TRUE if the two arguments are the same RDF term or if they are literals known to have the same value. The latter is tested with an XQuery function appropriate to the arguments.

The following sop:RDFterm-equal example passes the test because the mbox terms are the same RDF term:

 ?u = ?v
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
_:a foaf:name "Alice".
_:a foaf:mbox <mailto:alice@work.example> .
_:b foaf:name "Ms A.".
_:b foaf:mbox <mailto:alice@work.example> .

This query finds the people who have multiple foaf:name arcs:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name1 ?name2
 WHERE { ?x foaf:name ?name1 ;
 foaf:mbox ?mbox1 .
 ?y foaf:name ?name2 ;
 foaf:mbox ?mbox2 .
 FILTER (?mbox1 = ?mbox2 && ?name1 != ?name2)
 }

Query result:

name1 name2
"Alice" "Ms A."

In this query for documents that were annotated on new years day (2004 or 2005), the RDF terms are not the same, but have equivalent values:

@prefix a: <http://www.w3.org/2000/10/annotation-ns#> .
@prefix dc: <http://purl.org/dc/elements/1.1/> .
_:b a:annotates <http://www.w3.org/TR/rdf-sparql-query/> .
_:b dc:date "2004年12月31日T19:01:00-05:00"^^<http://www.w3.org/2001/XMLSchema#dateTime> .
PREFIX a: <http://www.w3.org/2000/10/annotation-ns#>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
SELECT ?annotates
WHERE { ?annot a:annotates ?annotates .
 ?annot dc:date ?date .
 FILTER ( ?date = xsd:dateTime("2004年01月01日T00:00:00Z") || ?date = xsd:dateTime("2005年01月01日T00:00:00Z") ) }
annotates
<http://www.w3.org/TR/rdf-sparql-query/>
11.2.3.2 sop:bound

Queries with union and optionals may have solutions with some unbound variables. The operator bound tests if a variable has been bound to a value. Variables with the value NaN or INF are considered bound.

 bound(?v)

Data:

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix xs: <http://www.w3.org/2001/XMLSchema#> .
_:a foaf:givenName "Alice".
_:b foaf:givenName "Bob" .
_:b dc:date "2005-04-04T04:04:04Z"^^xs:dateTime .

This query finds the people with a dc:date property:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
SELECT ?name ?givenName
 WHERE { ?x foaf:givenName ?name .
 OPTIONAL { ?x dc:date ?date } .
 FILTER bound(?date)) }

Query result:

namegivenName
"Bob"

One may test that a graph pattern is not expressed by specifying an optional graph pattern that introduces a variable and testing to see that the variable is not bound. This is called Negation as Failure in logic programming.

This query matches the people with a name but no expressed date:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
SELECT ?name
 WHERE { ?x foaf:name ?name .
 OPTIONAL { ?x dc:date ?date } .
 FILTER (!bound(?date)) }

Query result:

name
"Alice"

Because Alice's mbox was known, "Alice" was not a solution to the query.

11.2.3.3 sop:isURI

Returns whether a variable is bound to a URI.

 isURI(?v)
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
_:a foaf:name "Alice".
_:a foaf:mbox <mailto:alice@work.example> .
_:b foaf:name "Bob" .
_:b foaf:mbox "bob@work.example" .

This query matches the people with a name and an mbox which is a URI:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?mbox
 WHERE { ?x foaf:name ?name ;
 foaf:mbox ?mbox .
 FILTER isUri(?mbox) }

Query result:

name mbox
"Alice" <mailto:alice@work.example>
11.2.3.4 sop:isBlank

Returns whether a variable is bound to a blank node.

 isBlank(?v)
@prefix a: <http://www.w3.org/2000/10/annotation-ns#> .
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
_:a a:annotates <http://www.w3.org/TR/rdf-sparql-query/> .
_:a dc:creator "Alice B. Toeclips" .
_:b a:annotates <http://www.w3.org/TR/rdf-sparql-query/> .
_:b dc:creator _:c .
_:c foaf:given "Bob".
_:c foaf:family "Smith".

This query matches the people with a name and an mbox which is a URI:

PREFIX a: <http://www.w3.org/2000/10/annotation-ns#>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?given ?family
 WHERE { ?annot a:annotates <http://www.w3.org/TR/rdf-sparql-query/> .
 ?annot dc:creator ?c .
 OPTIONAL { ?c foaf:given ?given ; foaf:family ?family } .
 FILTER isBlank(?c)
 }

Query result:

given family
"Bob" "Smith"

In this example, there were two objects of foaf:knows predicates, but only one (_:c) was a blank node.

11.2.3.5 sop:isLiteral

Returns whether the argument is a literal.

 isLiteral(?v)
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
_:a foaf:name "Alice".
_:a foaf:mbox <mailto:alice@work.example> .
_:b foaf:name "Bob" .
_:b foaf:mbox "bob@work.example" .

This query is similar to the one in 1.2.1.3 except that is matches the people with a name and an mbox which is a Literal. This could be used to look for erroneous data (foaf:mbox should only have a URI as its object).

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?mbox
 WHERE { ?x foaf:name ?name ;
 foaf:mbox ?mbox .
 FILTER isLiteral(?mbox) }

Query result:

name mbox
"Bob" "bob@work.example"
11.2.3.6 sop:regex

Invokes the XPath fn:matches function to match the operand against a regular expression. The regular expression language is defined in XQuery 1.0 and XPath 2.0 Functions and Operators section 7.6.1 Regular Expression Syntax [17]. The collation is defined in section 7.3.1 Collations.

 regex(?v, "pattern")

or

 regex(?v, "pattern", "flags")
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
_:a foaf:name "Alice".
_:b foaf:name "Bob" .
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name
 WHERE { ?x foaf:name ?name
 FILTER regex(name, "^ali", "i") }

Query result:

name
"Alice"
11.2.3.7 sop:str

Returns an xs:string representation of an r:IRI. This is useful for examining parts of a URI, for instance, the host-name.

 str(?v)
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
_:a foaf:name "Alice".
_:a foaf:mbox <mailto:alice@work.example> .
_:b foaf:name "Bob" .
_:b foaf:mbox <mailto:bob@home.example> .

This query selects the set of people who use their work.example address in their foaf profile:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?mbox
 WHERE { ?x foaf:name ?name ;
 foaf:mbox ?mbox .
 FILTER regex(str(?mbox), "@work.example") }

Query result:

name mbox
"Alice" <alice@work.example>
11.2.3.8 sop:lang

Returns a valid RFC 3066 language string representing the XML schema language datatype for a variable.

 lang(?v)
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
_:a foaf:name "Robert"@EN.
_:a foaf:name "Roberto"@ES.
_:a foaf:mbox <mailto:bob@work.example> .

This query finds the Spanish foaf:name and foaf:mbox:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?mbox
 WHERE { ?x foaf:name ?name ;
 foaf:mbox ?mbox .
 FILTER ( lang(?name) = "ES" ) }

Query result:

name mbox
"Roberto"@ES <mailto:bob@work.example>
11.2.3.9 sop:datatype

Returns the datatype of its argument if that argument is a typed literal. Otherwise it fails.

 datatype(?v)
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix eg: <http://biometrics.example/ns#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
_:a foaf:name "alice".
_:a eg:shoeSize "9.5"^^xsd:float .
_:b foaf:name "bob".
_:b eg:shoeSize "42"^^xsd:integer .

This query finds everyone's foaf:name and integer foaf:shoeSize:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX eg: <http://biometrics.example/ns#>
SELECT ?name ?size
 WHERE { ?x foaf:name ?name ; eg:shoeSize ?size .
 FILTER ( datatype(?size) = xsd:int ) }

Query result:

name shoeSize
"Bob" 42
11.2.3.10 sop:logical-or

Returns a logical OR of the arguments. As with other functions and operators with boolean arguments, sop:logical-or operates on the effective boolean value of its arguments.

 ?u || ?v
11.2.3.11 sop:logical-and

Returns a logical AND of the arguments. As with other functions and operators with boolean arguments, sop:logical-and operates on the effective boolean value of its arguments.

 ?u && ?v

Table 11.2 SPARQL Constructor Functions

SPARQL imports a subset of the XPath constructor functions defined in XQuery 1.0 and XPath 2.0 Functions and Operators [17] in section 17.1 Casting from primitive types to primitive types. SPARQL constructors include all of the XPath constructors for the SPARQL operand data types plus the additional datatypes imposed by the RDF data model. Casting in SPARQL is peformed by calling a constructor function for the target type on an operand of the source type. The table below summarizes the casting operatoins that are always allowed (Y), never allowed (N) and dependent on the lexical value (M). A casting operation from an xs:string (the first row) to an xs:float (the second column) is dependent on the lexical value (M).

bool = xs:boolean
dbl = xs:double
flt = xs:float
dec = xs:decimal
int = xs:integer
dT = xs:dateTime
str = xs:string
IRI = r:IRI — introduced by the RDF data model
ltrl = r:Literal — introduced by the RDF data model

S\T str flt dbl dec int dT bool IRI ltrl
str Y M M M M M M M M
flt Y Y Y M M N Y N N
dbl Y Y Y M M N Y N N
dec Y Y Y Y Y N Y N N
int Y Y Y Y Y N Y N N
dT Y N N N N Y N N N
bool Y Y Y Y Y N Y N N
IRI Y N N N N N N Y N
ltrl Y M M M M M M M Y

11.2.4 Extensible Value Testing

An expression can also be a function call to an extension function. A function is named by an IRI, and returns an RDF term. The semantics of these functions are identified by the IRI identifying the function.

If a query request contains a function that it is not supported, the query is not executed and an error is returned.

SPARQL queries using extension functions are likely to have limited interoperability.

Syntax:

x:qname( expression, expression , ...)

Examples:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX my: <http://my.example/functions#>
SELECT ?name ?id
WHERE { ?x foaf:name ?name ;
 my:empId ?id .
 FILTER my:even(?id) }
PREFIX myGeo: <http://my.example.org/geo#>
SELECT ?x ?y
WHERE { ?x myGeo:placeName "SWEB Town" .
 ?x myGeo:location ?xLoc .
 ?y myGeo:location ?yLoc .
 FILTER ( myGeo:distance(?x, ?y) < 10 ) . 
 }

A function returns an RDF term. It might be used to test some application datatype not supported by the core SPARQL specification, it might be a transformation between datatype formats, for example into an XSD dateTime RDF term from another date format.

A. SPARQL Grammar

A SPARQL query string is a sequence of characters in the language defined by the following grammar, starting with the Query production. The EBNF format is the same as that used in the XML 1.1 specification. Please see the "Notation" section of that specification for specific information about the notation.

Whitespace

Whitespace is used to separate two terminals which would otherwise be (mis-)recognized as one terminal. Whitespace in terminals is significant. Otherwise whitespace is ignored. As a hint, rule names below in capitals indicate a possible choice of terminals.

Whitespace is defined as:

WS ::= #x20 | #x9 | #xD | #xA

Keywords

Keywords are shown in uppercase but are matched in a case-insensitive manner.

The exception is the keyword 'a' which, in line with Turtle and N3, is used in place of the IRI rdf:type (in full, http://www.w3.org/1999/02/22-rdf-syntax-ns#type).

Comments

Comments in SPARQL queries take the form of '#', outside an IRI or string, and continue to the end of line or end of file if there is no end of line after the comment marker.

Grammar

[3] BaseDecl ::= 'BASE' QuotedIRIref
[4] PrefixDecl ::= 'PREFIX' QNAME_NS QuotedIRIref
[5] SelectQuery ::= 'SELECT' 'DISTINCT'? ( Var+ | '*' ) DatasetClause* WhereClause SolutionModifier
[11] NamedGraphClause ::= 'NAMED' SourceSelector
[13] WhereClause ::= 'WHERE'? GroupGraphPattern
[15] OrderClause ::= 'ORDER' 'BY' OrderCondition+
[16] OrderCondition ::= ( ( 'ASC' | 'DESC' ) BrackettedExpression )
| ( FunctionCall | Var | BrackettedExpression )
[17] LimitClause ::= 'LIMIT' INTEGER
[18] OffsetClause ::= 'OFFSET' INTEGER
[19] GroupGraphPattern ::= '{' GraphPattern '}'
[26] ConstructTemplate ::= '{' Triples? '.'? '}'
[27] Triples ::= Triples1 ( '.' Triples )?
[31] ObjectList ::= Object ( ',' ObjectList )?
[32] Verb ::= VarOrBlankNodeOrIRIref | 'a'
[36] Collection ::= '(' GraphNode+ ')'
[38] VarOrTerm ::= Var | GraphTerm
[39] VarOrIRIref ::= Var | IRIref
[41] Var ::= VAR1 | VAR2
[42] GraphTerm ::= RDFTerm | '(' ')'
[52] CallExpression ::= 'STR' '(' Expression ')'
| 'LANG' '(' Expression ')'
| 'DATATYPE' '(' Expression ')'
| 'BOUND' '(' Var ')'
| 'isURI' '(' Expression ')'
| 'isBLANK' '(' Expression ')'
| 'isLITERAL' '(' Expression ')'
| RegexExpression
| FunctionCall
[53] RegexExpression ::= 'REGEX' '(' Expression ',' Expression ( ',' Expression )? ')'
[55] ArgList ::= ( '(' ')' | '(' Expression ( ',' Expression )* ')' )
[56] BrackettedExpression ::= '(' Expression ')'
[60] RDFLiteral ::= String ( LANGTAG | ( '^^' IRIref ) )?
[61] BooleanLiteral ::= 'true' | 'false'
[64] QName ::= QNAME | QNAME_NS
[65] BlankNode ::= BNODE_LABEL | '[' ']'
[66] QuotedIRIref ::= '<' ([^> ])* '>' /* An IRI reference : RFC 3987 */
[67] QNAME_NS ::= NCNAME_PREFIX? ':'
[68] QNAME ::= NCNAME_PREFIX? ':' NCNAME?
[69] BNODE_LABEL ::= '_:' NCNAME
[70] VAR1 ::= '?' VARNAME
[71] VAR2 ::= '$' VARNAME
[72] LANGTAG ::= '@' [a-zA-Z]+ ('-' [a-zA-Z0-9]+)*
[73] INTEGER ::= [0-9]+
[74] DECIMAL ::= [0-9]+ '.' [0-9]* | '.' [0-9]+
[75] FLOATING_POINT ::= [0-9]+ '.' [0-9]* EXPONENT? | '.' ([0-9])+ EXPONENT? | ([0-9])+ EXPONENT
[76] EXPONENT ::= [eE] [+-]? [0-9]+
[77] STRING_LITERAL1 ::= "'" ( ([^#x27#x5C#xA#xD]) | ('\' [^#xD#xA]) )* "'"
[78] STRING_LITERAL2 ::= '"' ( ([^#x22#x5C#xA#xD]) | ('\' [^#xD#xA]) )* '"'
[79] STRING_LITERAL_LONG1 ::= "'''" ( [^'\] | ('\' [^#xD#xA]) | ("'" [^']) | ("''" [^']) )* "'''"
[80] STRING_LITERAL_LONG2 ::= '"""' ( [^"\] | ('\' [^#xD#xA]) | ('"' [^"]) | ('""' [^"]) )* '"""'
[81] NCCHAR1 ::= [A-Z]
| [a-z]
| [#x00C0-#x00D6]
| [#x00D8-#x00F6]
| [#x00F8-#x02FF]
| [#x0370-#x037D]
| [#x037F-#x1FFF]
| [#x200C-#x200D]
| [#x2070-#x218F]
| [#x2C00-#x2FEF]
| [#x3001-#xD7FF]
| [#xF900-#xFDCF]
| [#xFDF0-#xFFFD]
| [#x10000-#xEFFFF]
[82] VARNAME ::= ( NCCHAR1 | [0-9] ) ( NCCHAR1 | "_" | [0-9] | #x00B7 | [#x0300-#x036F] | [#x203F-#x2040] )*
[83] NCCHAR ::= NCCHAR1 | '_' | '-' | [0-9] | #x00B7 | [#x0300-#x036F] | [#x203F-#x2040]
[84] NCNAME_PREFIX ::= NCCHAR1 ((NCCHAR|".")* NCCHAR)?
[85] NCNAME ::= ( "_" | NCCHAR1 ) ((NCCHAR|".")* NCCHAR)?

Some productions are ambiguous. The longest match of a production applies (sometimes called "greedy" algorithm).

B. References

Normative References

[12]
Resource Description Framework (RDF): Concepts and Abstract Syntax , G. Klyne, J. J. Carroll, Editors, W3C Recommendation, 10 February 2004, http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/ . Latest version available at http://www.w3.org/TR/rdf-concepts/ .
[13]
RFC 3986, "Uniform Resource Identifier (URI): Generic Syntax", T. Berners-Lee, R. Fielding, L. Masinter
[19]
RFC 3987, "Internationalized Resource Identifiers (IRIs)", M. Dürst , M. Suignard
[17]
XQuery 1.0 and XPath 2.0 Functions and Operators , J. Melton, A. Malhotra, N. Walsh, Editors, W3C Working Draft (work in progress), 4 April 2005, http://www.w3.org/TR/2005/WD-xpath-functions-20050404/ . Latest version available at http://www.w3.org/TR/xpath-functions/ .
[18]
XQuery 1.0: An XML Query Language , S. Boag, M. F. Fernández, D. Chamberlin, D. Florescu, J. Robie, J. Siméon, Editors, W3C Working Draft (work in progress), 4 April 2005, http://www.w3.org/TR/2005/WD-xquery-20050404/ . Latest version available at http://www.w3.org/TR/xquery .

Informative References

[11]
RDF Data Access Use Cases and Requirements , K. Clark, Editor, W3C Working Draft (work in progress), 25 March 2005, http://www.w3.org/TR/2005/WD-rdf-dawg-uc-20050325/ . Latest version available at http://www.w3.org/TR/rdf-dawg-uc/ .
[14]
Namespaces in XML 1.1 , T. Bray, A. Layman, D. Hollander, R. Tobin, Editors, W3C Recommendation, 4 February 2004, http://www.w3.org/TR/2004/REC-xml-names11-20040204 . Latest version available at http://www.w3.org/TR/xml-names11/ .
[15]
"Turtle - Terse RDF Triple Language, Dave Beckett.
[16]
SPARQL Query Results XML Format , D. Beckett, Editor, W3C Working Draft (work in progress), 27 May 2005, http://www.w3.org/TR/2005/WD-rdf-sparql-XMLres-20050527/ . Latest version available at http://www.w3.org/TR/rdf-sparql-XMLres/ .
[20]
Architecture of the World Wide Web, Volume One , Editors: Ian Jacobs, Norman Walsh
[21]
Unicode Security Considerations , Mark Davis, Michel Suignard

Valid XHTML 1.0!


C. Change Log

Changes since the 19 Apr 2005 Working Draft:

 
$Log: Overview.html,v $
Revision 1.12 2018年10月09日 13:31:10 denis
fix validation of xhtml documents
Revision 1.11 2017年10月02日 10:30:43 denis
add fixup.js to old specs
Revision 1.10 2005年07月21日 19:15:31 connolly
defn links to go other defns
Revision 1.9 2005年07月21日 18:10:36 connolly
commented out "published... "
Revision 1.8 2005年07月21日 17:37:30 connolly
~fixed anchor ericp rq23 1.434 2005年07月21日 17:24:58
Revision 1.7 2005年07月21日 17:19:07 connolly
link fixes from rq23 1.433
Revision 1.6 2005年07月21日 17:13:37 connolly
fixed year of comments due
Revision 1.5 2005年07月21日 17:07:28 connolly
elaborate due date again
Revision 1.4 2005年07月21日 17:05:48 connolly
comment due date spelled out
Revision 1.3 2005年07月21日 16:55:38 connolly
document date
Revision 1.2 2005年07月21日 16:52:58 connolly
WD style and SOTD
Revision 1.1 2005年07月21日 16:36:59 connolly
copied from editors draft
Revision 1.432 2005年07月21日 16:29:55 eric
~typo: s/rexex/regex/
Revision 1.431 2005年07月21日 16:21:44 eric
+ids for some new sections
~change F&O refs to undated version
~simplified sop:regex text
Revision 1.430 2005年07月21日 14:06:43 eric
~fix encoding of CVS comment
Revision 1.429 2005年07月19日 16:16:02 aseaborne
+ Optional definition now explicitly a binary operator.
+ Added text to define { optional {P} } as { {} optional{P} }
Revision 1.428 2005年07月18日 02:32:23 eric
~switch to Privacy Policy disclosures page per ericP's message to the DAWG
Revision 1.427 2005年07月15日 14:34:44 aseaborne
Editorial: typo
Revision 1.426 2005年07月15日 14:33:47 aseaborne
Editorial: text on terminals mention <> but they are just in caps
Revision 1.425 2005年07月14日 21:00:56 eric
~addressed Souripriya Das's comments in section 11
Revision 1.424 2005年07月14日 20:57:11 eric
+external appendix ref to Collected Formal Definitions
Revision 1.423 2005年07月14日 12:04:17 eric
+Unicode Security Considerations is published. added an informative ref [21]
Revision 1.422 2005年07月14日 11:02:45 eric
~addressed Andy's feedback on sop:regex
Revision 1.421 2005年07月13日 07:56:37 aseaborne
Text in 2.7 chnaged to WG decision of 12 July 2005
Revision 1.420 2005年07月12日 15:38:40 eric
~fixed typos in castN/castM classes in the constructor function table
Revision 1.419 2005年07月12日 15:02:12 eric
expanded regex
Revision 1.418 2005年07月09日 16:36:51 aseaborne
Fix xHTML duplicate id
Revision 1.417 2005年07月09日 16:35:05 aseaborne
Editorial changes based on comments by Souri Das 2005JulSep/0009
+ revised language in 10.1 intro
+ s/set/collection/ in definitions of "solution sequence" and
 "solution sequnce modifier"
+ Added example for projection
+ Definition of projection uses "S" for two different things.
Revision 1.416 2005年07月06日 09:58:42 eric
broke out the issues in the foo:resume example
Revision 1.415 2005年07月05日 14:26:28 eric
+IRI matching advice
Revision 1.414 2005年07月02日 01:38:27 eric
~fixed Martin Dürst's name
Revision 1.413 2005年07月01日 10:55:08 aseaborne
"." had crept into NCNAME - removed (comment from Jos)
Revision 1.412 2005年07月01日 08:30:52 aseaborne
s/set of solution/set of solutions/ from Kendall
Revision 1.411 2005年07月01日 08:17:39 aseaborne
Removed @@Matching is on a graph from a dataset
Revision 1.410 2005年06月30日 21:27:29 connolly
removed
 - @@Ensure markup around examples enables XSLT
 - @@Labeling when document is TOC-stable
 - @@Prefix - sec 1.1 - See if there are any ...
per 28 Jun minutes
and removed
 - @@Query Results XML Format uses a namespace ...
since AndyS addressed that
Revision 1.409 2005年06月30日 13:23:26 aseaborne
+ Fixed CONSTRUCT defintion to include sequence modifiers.
 All result form definitions should follow the same basic layout.
+ Added CONSTRUCT example using ORDER BY and LIMIT
Revision 1.408 2005年06月28日 17:32:11 aseaborne
+ Updated XML results namespace (SELECT and ASK examples)
Revision 1.407 2005年06月28日 17:12:57 aseaborne
+ qnames no longer have trailing DOTs
+ grammar clean up (remove unused rules, remove unnecessary ())
Revision 1.406 2005年06月20日 09:53:33 aseaborne
+ Corrected string literals to use #xXX notation, not \n notation
Revision 1.405 2005年06月18日 16:21:38 aseaborne
+ Link fixing
+ Correct the nature of a "greedy" algorithm to longest match
Revision 1.404 2005年06月18日 13:16:56 aseaborne
Fix links (2.2 and solution modifier)
Revision 1.403 2005年06月18日 13:11:33 aseaborne
Fixed BASE IRI in sec 2.1
Revision 1.402 2005年06月17日 15:36:20 aseaborne
Fix validation error
Revision 1.401 2005年06月17日 15:34:17 aseaborne
+ Defined a dataset match to match a pattern to the default graph
+ Moved 8.5 (definition of GRAPH) into sec 7 to put all the
 dataset related defitnions together.
+ There is always a default graph (which may be empty)
+ Noted that "first matching rule wins" in grammar rules
 (text is actually from RFC 3897).
Revision 1.400 2005年06月17日 13:31:18 aseaborne
+ Grammar bug: "DESCRIBE *" required "DESCRIBE DESCRIBE *"
 Fixed.
Revision 1.399 2005年06月16日 13:58:39 aseaborne
+ Fixed grammar VARNAME (adding [#x0300-#x036F] | [#x203F-#x2040])
+ Defined whitespace
Revision 1.397 2005年06月15日 10:57:44 aseaborne
+ Updated syntax for FILTER - expressions that now need ()
+ Changes to examples to reflect this
Revision 1.396 2005年06月14日 17:15:28 aseaborne
Corrected typo as noted in: 2005AprJun/0388
Revision 1.395 2005年06月14日 15:19:37 eric
got rid of last @@s in section 11
Revision 1.394 2005年06月14日 08:37:05 aseaborne
Fixed ref (UTF-8 problem)
Revision 1.393 2005年06月14日 07:45:59 aseaborne
Typo
Revision 1.390 2005年06月13日 13:37:19 aseaborne
2005AprJun/0347
+ Reformatted the first query to reduce length and include a DOT
2005AprJun/0351
+ Removed from 2.5 mention of bNodes in results
+ Correct section 2.5 title to be "example"
Other:
+ Removed acknowledgements (text saved elsewhere)
 Need principled policy.
Revision 1.389 2005年06月13日 11:51:55 aseaborne
Comments from Kendall Clark 2005AprJun/0353
 Comments not accepted noted in email.
(sections 7, 8, 9, 10)
Editorial corrections
Revision 1.386 2005年06月10日 14:03:08 aseaborne
Comments from Kendall Clark 2005AprJun/0353
 Comments not accepted noted in email.
(section 2.2 - 2.8)
+ Query bNodes can appear in constraints and modifiers.
Other:
+ Redid titles of section 2.3 and 2.4 to be more accurate
+ Eliminate Query Results definition.
[CVS recommitted to catch log]
Revision 1.385 2005年06月10日 14:02:27 aseaborne
Comments from Kendall Clark 2005AprJun/0353
 Comments not accepted noted in email.
Non minor editorial changes:
+ Abstract: fix SPARQL acronym
Also:
+ Noted we must finalize the result format namespace and schema URI.
+ made sections involving defintions more consistent
 Section 3.3 added to separate out value constriant definition
(to end of 2.1)
[CVS recommited to catch log]
Revision 1.384 2005年06月10日 13:56:51 aseaborne
Align CVS
Revision 1.381 2005年06月09日 16:00:39 aseaborne
validation
Revision 1.380 2005年06月09日 15:59:21 aseaborne
+ Removed old definition of OPTIONAL
+ s/entailment/subgraph/ in defn of basic pattern
+ Demoted "query pattern" from formal defintion to part of query definition.
+ Removed
 """
 Open: whether to allow "foo"@?v or ?v@fr or ?v^^xsd:integer or "foo"^^?v
 """
+ Added text to explain that optional is a tautology.
+ Fixed example in ORDER BY which still had []
+ Order URIs by lexical order of the characters making up the URI
Revision 1.379 2005年06月09日 08:24:01 aseaborne
Grammar table updated
 Corrected NCCHAR1 to align with XML 1.1
 + adds [#x10000-#xEFFFF] to NCCHAR1
 + adds [#x0300-#x036F] | [#x203F-#x2040] to NCCHAR
 Rules reorg to allow for FILTER() change
 (No change to language).
Revision 1.378 2005年06月08日 16:30:43 aseaborne
+ Noted that there may be no default graph in a dataset.
+ Added text from DanC about dataset descriptions (sec 9 intro)
+ Added text to say that specifying the dataset overrides an service dataset.
+ Added allowing multiple FROM clauses
+ Added text noting the indirect relationship of a IRI in FROM NAMED
 and the graph so used.
+ Ref to webarch (informative?)
Revision 1.377 2005年06月08日 10:02:30 eric
note that i'm not sure about the best definition of an IRI
Revision 1.376 2005年06月08日 09:54:36 eric
s/(URIRef|URI)/IRI/ in section 11
Revision 1.375 2005年06月07日 19:23:51 connolly
- removed reference to the WG from the abstract
- truncated the changelog to show just diffs
 since last WD (19 Apr)
Revision 1.374 2005年06月07日 19:09:10 connolly
- linked to extracted definitions from status section
- fixed XML wf problems in grammar section
 by adding space before title attributes
Revision 1.373 2005年06月06日 14:45:18 aseaborne
Need to note that there need not be a default graph
Revision 1.372 2005年06月06日 11:07:55 aseaborne
+ Changes to use IRIs in SPARQL, not URIs, as per
 2005AprJun/0156
 except for section 11 changes.
+ All " class=wasSpan" removed
Revision 1.371 2005年06月03日 18:02:50 aseaborne
+ Added @@ with text from Dan about relationship of URI and graphs
+ Added @@ with text from Dan about use of IRIs for graphs to be
 about graphs obtained from representations.
+ Added @@ for multiple FROMs to mean merge to form the default graph
Revision 1.370 2005年06月02日 11:27:25 aseaborne
Corrections in 9.1 from Yoshio.
Revision 1.369 2005年06月01日 10:23:39 eric
~ fixing bugs reported by DaveB
Revision 1.368 2005年05月31日 22:29:23 connolly
split normative refs from informative refs from acks
formatted refs to W3C tech reports per bib generator
Revision 1.367 2005年05月31日 08:31:36 eric
get rid of issue
Revision 1.366 2005年05月31日 08:14:57 aseaborne
Grammar mistakes fixed:
+ added \ to literal \ in triple
+ Remove unreferenced rule QueryPatternTail
Revision 1.365 2005年05月31日 07:55:24 eric
~making rule markup backslash-consitent
Revision 1.364 2005年05月30日 15:24:16 eric
made 11.2.3.2 less stupidly broken
Revision 1.363 2005年05月30日 05:00:23 eric
~ s/foaf:age/foaf:nick/
~ minor edits in sections 8 and 9
Revision 1.362 2005年05月30日 02:51:06 eric
~ cleaned up FandO table token style
+ added titles to the production references
Revision 1.361 2005年05月30日 01:11:38 eric
s/span class="code"/code class="wasSpan"/g
Revision 1.360 2005年05月30日 00:25:36 eric
validated and got rid of extraneous comments
Revision 1.359 2005年05月28日 03:32:00 eric
simplified style-sheets
Revision 1.358 2005年05月27日 11:15:21 aseaborne
Style for grammar table
Revision 1.357 2005年05月27日 10:45:02 aseaborne
Text for section 4.2 on noting unbound variables
Revision 1.356 2005年05月27日 09:27:20 aseaborne
sync
Revision 1.355 2005年05月27日 09:14:32 aseaborne
Gramnmar update
Revision 1.354 2005年05月27日 08:50:55 eric
trying different table format
Revision 1.353 2005年05月27日 08:49:28 aseaborne
+ Turned section 11.3 into section 11.2.4
Revision 1.352 2005年05月26日 16:29:30 aseaborne
+ Added example in section 9.3
Revision 1.351 2005年05月26日 15:40:38 aseaborne
Validation corrections
Revision 1.350 2005年05月26日 15:38:13 aseaborne
+ Added example in XML result format for ASK
+ Removed some @@ToDo@@'s that had been done or no longer were relevant
Revision 1.349 2005年05月25日 14:56:16 aseaborne
+ Definitions for SELECT/CONSTRUCT/DESCRIBE/ASK
Revision 1.348 2005年05月25日 14:00:32 eric
addressing Steve's comments starting in #dawg at 2005年05月25日T10:27:01Z
Revision 1.347 2005年05月25日 13:29:08 eric
s/dc:created/dc:date/g per Steve's observation
Revision 1.346 2005年05月25日 06:00:06 eric
pass through DaveB's comments on section 11.
Revision 1.345 2005年05月25日 05:00:24 eric
some words on extensibility
Revision 1.344 2005年05月23日 12:49:50 aseaborne
Continued editorial changes: sections 8,9,10
+ Section 8
 graph label => graph name or graph URI (depending on context)
Other editorial changes.
Revision 1.341 2005年05月20日 12:59:22 aseaborne
+ Trivia: Grammar: Moved parens into definition of
 ArgList so production is not empty. No change to language.
Revision 1.340 2005年05月20日 10:50:36 aseaborne
+ Definitions of sequnce sequnces and modifiers.
Revision 1.339 2005年05月20日 09:55:11 aseaborne
+ s/substitution/solution/g
 "Substitution" is more focused on the mechanisms of definition
 "Solution" terminolgy is more focused on the outcome to the application
+ Rewording inconsistent language.
Revision 1.338 2005年05月19日 14:33:59 aseaborne
HTML fixing
Revision 1.337 2005年05月19日 14:30:43 aseaborne
HTML tidying
Revision 1.336 2005年05月19日 14:20:08 aseaborne
Definition editing
 + Graph Pattern: Move list outside defn box
 + Reworded "Query Pattern"
 + Reworded "Query Solution"
 + Reworded "SPARQL Query" to enumerate the tuple
 Carried through to other definitions
 + Reworded "Value constraint" to include "matching"
Formatted all definitions based on <div class="defn">.
Revision 1.335 2005年05月18日 13:53:55 aseaborne
+ Definitions
 + Named and unnamed query variables
 + Basic patterns match by entailment (was "subgraph")
Revision 1.334 2005年05月18日 13:11:54 aseaborne
+ Editing pass over definitions:
 Rewording prior to review
 Definitions work on the name of the graph pattern, not the name of
 the "matching" operation
+ Added draft definitions for sequence sequence and it's modifiers
+ Changed the working example of a triple pattern match (2.3)
+ Update the XML result example to latest schema
+ Grammar: removed 2 rules which only had a single
 token as their production
+ Removed section 9 ("Ordering") and inserted text in Group Pattern section
 to say that all orders are valid.
Revision 1.333 2005年05月17日 16:14:29 aseaborne
+ Change "set" to "tuple" in definition of SPARQL Query
+ Fixing HTML
Revision 1.332 2005年05月16日 13:01:03 aseaborne
+ Use "SPARQL Query string" for the grammar
 "SPARQL query" for the abstraction
+ Typo in order section
Revision 1.331 2005年05月13日 04:19:09 aseaborne
Fixed TOC headings (5.2/5.3 text was switched)
Revision 1.330 2005年05月06日 12:50:45 aseaborne
Grammar update:
+ Removed special case of {}-less QueryPattern
+ VARNAME corrected to NCNAME - "." and "-"
+ Removed some lookahead in SELECT and DISTINCT
+ Changed SelectClause to SelectQuery and moved the clasues into the
 per-query type rule.
 Same for Construct/Describe/Ask
+ s/URI/IRIref/
Revision 1.329 2005年05月04日 17:22:30 aseaborne
+ Added definition boxes in sec 10.1
 Content to TBD.
+ s/background graph/default graph/g
Revision 1.328 2005年05月03日 12:34:36 aseaborne
+ Comments based on
2005AprJun/0013
 + Def Substitution : reworded
 + Def Restriction: Pattern Insatnce - clarified what happnes when
 a variable is not in the substitution.
Revision 1.327 2005年04月29日 14:15:22 aseaborne
Changes based on comments by Bijan Parsia
 + Change to definition of "RDF Term" - moved descriptive reference
 to RDF Data Model to text.
 + Note that set of query variables is infinite.
Other changes:
 + Split 2.2 into basic definitions and basic graph patterns
 + Repaired HTML for Graph Pattern definition.
 + Add definition of "SPARQL query"
Revision 1.326 2005年04月26日 13:56:51 aseaborne
+ Fixed grammar (over zealous neating by perl in rules 27 and 50)
Revision 1.325 2005年04月26日 13:12:02 aseaborne
+ Fixed markup in grammar
Revision 1.324 2005年04月26日 12:39:24 aseaborne
+ Tuning the grammar
 + added long literals
 + qnames have trailing dots (c.f. Turtle)
Revision 1.323 2005年04月25日 17:08:06 aseaborne
+ Tuning the grammar
Revision 1.322 2005年04月22日 16:58:31 aseaborne
+ Fixed HTML for results in 10.3
Revision 1.321 2005年04月22日 15:16:29 aseaborne
+ Removed text-transform in class .token
 and explicit include uppercase in HTML
 (aids searching).
Revision 1.319 2005年04月20日 08:28:01 eric
changed back to an editor's draft

Valid XHTML 1.0!

AltStyle によって変換されたページ (->オリジナル) /