Frequency MHz Electrical length deg Dielectric relative permittivity (εr) Dielectric height (h ) μm Conductor thickness (t ) μm Buried depth (b) μm Conductor width (w ) ≈ μm Impedance (Z0) Ω Impedance (Z0,buried ) ≈ Ω Effective relative permittivity ≈ Capacitance ≈ pF/m Inductance ≈ nH/m Velocity of propagation ≈ Physical length ≈ mm Rightangle bend compensation (rc) ≈ Open end effect length (Δℓ ) ≈ μm Side gap (s) μm Differential impedance (Zdiff) ≈ Ω Note: The practical ranges for Z0 and Zdiff are from 20 Ω to about 150 Ω, with possible erros of up to ± 10%. ustrip-3.2.js (Javascript program and Input form used in this page.) Formulas used Micro strip line impedance Micro-strip-line characteristic impedance where, w_\mathrm{eff} & \simeq & w + t \frac{1 + \displaystyle\frac{1}{\varepsilon_\mathrm{r}}}{2 \pi}\left(1 + \ln \left( \frac{4}{ \sqrt{\left(\displaystyle\frac{t}{h}\right)^2 +\left(\displaystyle\frac{1}{\pi}\frac{1}{\displaystyle\frac{w}{t} + 1.1}\right)^2} } \right)\right) Open end effect length Open end effect length Rightangle bend compensation. Valid for w / h ≥ 0.25, ϵr ≤ 24, ± 4 % accuracy. R_\mathrm{miter} & = & 0.52 + 0.65 \ e^{\displaystyle\left(\frac{-1.35\ w}{h} \right)} Buried microstrip line Z_\mathrm{0,buried} &=& Z_0 \sqrt{\frac{ \varepsilon_\mathrm{eff}}{\varepsilon_\mathrm{eff,buried}}}\\ \varepsilon_\mathrm{eff,buried} &=& \varepsilon_\mathrm{eff} \ e^{\displaystyle\left( 2b / h \right)} + \varepsilon_r \left(1 - e^{\displaystyle\left(-2 b / h \right)}\right) Differencial impedance of side coupled microstrip line Z_\mathrm{diff} $ \simeq $ Z_0 \left(1 - 0.48\ e^{\left(\displaystyle\frac{-0.96 s}{h}\right)} \right) APPENDIX Example of field solver results (simulation box width W = 12 h + 4 t + 2 s + w, box height H = 8 h + t) Length unit in [ grid ]. w = 200, h = 200, t = 35, b = 0, ϵr=4.7, W = 2740, H = 1635 : Z0 ≃ 63.303 Ω w = 200, h = 200, t = 35, b = 55, ϵr=4.7, W = 2740, H = 1635 : Z0 ≃ 58.388 Ω [画像:microstripline with solder resist] Pseudo color visualization of absolute value of the electric field. REFERENCE H. A. Wheeler, "Transmission-line properties of a strip on a dielectric sheet on a plane", IEEE Trans. Microwave Theory Tech., vol. MTT-25, pp.631-647, Aug. 1977. R. J. Douville and D. S. James, "Experimental study of symmetric microstrip bends and their compensation", IEEE Trans. Microwave Theory Tech., vol. MTT-26, pp. 175-182, Mar. 1978 James A. Mears, "Transmission Line RAPIDESIGNER Operation and Applications Guide", National Semiconductor Application Note, AN-905, May.1996 Brian C. Wadell, "Transmission Line Design Handbook", Artech House, Inc., 1991, ISBN 0-89006-436-9 SEE ALSO Effect of the top coat on Planar Transmission Lines Conductor-backed Coplanar Waveguide Analysis for the HP 42S - Synthesize/Analyze microstrip transmission line for the HP 32sII - Synthesize/Analyze microstrip transmission line for the HP 15C - Synthesize/Analyze microstrip transmission line Ostrowski's method Online-calculator - Inductance of a straight conductor of thin flat section Powered by Finetune AltStyle によって変換されたページ (->オリジナル) / アドレス: モード: デフォルト 音声ブラウザ ルビ付き 配色反転 文字拡大 モバイル
Micro strip line impedance Micro-strip-line characteristic impedance where, w_\mathrm{eff} & \simeq & w + t \frac{1 + \displaystyle\frac{1}{\varepsilon_\mathrm{r}}}{2 \pi}\left(1 + \ln \left( \frac{4}{ \sqrt{\left(\displaystyle\frac{t}{h}\right)^2 +\left(\displaystyle\frac{1}{\pi}\frac{1}{\displaystyle\frac{w}{t} + 1.1}\right)^2} } \right)\right) Open end effect length Open end effect length Rightangle bend compensation. Valid for w / h ≥ 0.25, ϵr ≤ 24, ± 4 % accuracy. R_\mathrm{miter} & = & 0.52 + 0.65 \ e^{\displaystyle\left(\frac{-1.35\ w}{h} \right)} Buried microstrip line Z_\mathrm{0,buried} &=& Z_0 \sqrt{\frac{ \varepsilon_\mathrm{eff}}{\varepsilon_\mathrm{eff,buried}}}\\ \varepsilon_\mathrm{eff,buried} &=& \varepsilon_\mathrm{eff} \ e^{\displaystyle\left( 2b / h \right)} + \varepsilon_r \left(1 - e^{\displaystyle\left(-2 b / h \right)}\right) Differencial impedance of side coupled microstrip line Z_\mathrm{diff} $ \simeq $ Z_0 \left(1 - 0.48\ e^{\left(\displaystyle\frac{-0.96 s}{h}\right)} \right)
Example of field solver results (simulation box width W = 12 h + 4 t + 2 s + w, box height H = 8 h + t) Length unit in [ grid ]. w = 200, h = 200, t = 35, b = 0, ϵr=4.7, W = 2740, H = 1635 : Z0 ≃ 63.303 Ω w = 200, h = 200, t = 35, b = 55, ϵr=4.7, W = 2740, H = 1635 : Z0 ≃ 58.388 Ω [画像:microstripline with solder resist] Pseudo color visualization of absolute value of the electric field.
AltStyle によって変換されたページ (->オリジナル) / アドレス: モード: デフォルト 音声ブラウザ ルビ付き 配色反転 文字拡大 モバイル