Tentative Schedule
Date
Inst.
Topic
Readings
Notes
Module: Foundations
Jan 17
MV
Intro (
slides)
KM Chap. 1
Jan 22
PR
Prob. Models: Estimators, Guarantees, MLE (
slides)
KM Chap. 2, 6
Jan 24
MV
Prob. Models: Bayesian Estimation, MAP (
slides)
TM Chap. 6,
KM Chap. 5
Jan 29
PR
Model-free Methods, Decision Theory (
slides)
HTF Chap. 2
HW1 out
Module: Prediction, Parametric Methods
Jan 31
PR
Regression: Linear Regression (
slides)
CB Chap. 3
Feb 05
MV
Regularized, Polynomial, Logistic Regression (
slides)
CB Chap. 3, 4
Feb 07
PR
Classification: Naive Bayes, Generative vs Discriminative (
slides)
CB Chap. 4
Feb 12
PR
Classification: Support Vector Machines (
slides)
KM Chap. 14
HW 1 due/
(
HW2out)
Feb 14
PR
Classification: Boosting, Surrogate Losses (
slides)
HTF Chap. 10
Feb 19
MV
Decision Trees (
slides)
TM Chap. 3,
HTF Chap. 9
Feb 21
PR
Foundations: Generalization, Model Selection (
slides)
HTF Chap. 7
Feb 26
MV
Neural Networks and Deep Learning (
slides)
CB Chap. 5,
KM Chap. 28
HW 2 due/
(
HW3out)
Feb 28
MV
Neural Networks and Deep Learning (
slides)
CB Chap. 5,
KM Chap. 28
Module: Non-Parametric Methods
March 05
PR
Non-parametric Models: K nearest neighbors, kernel regression (
slides)
TM Chap. 8,
HTF Chap. 6, 13
Mar 07
PR
Non-parametric Models: SVM, Lin Reg: primal + dual, Kernels, Kernel Trick (
slides)
CB Chap. 6, 7
HW 3 due (Mar 9)
Mar 12
No Class, Spring Break
Mar 14
No Class, Spring Break
Module: Unsupervised Learning
Mar 19
Midterm Review.
Midterm Review (
slides)
Mar 21
Midterm
Mar 26
PR
Unsupervised Learning: Clustering, Kmeans (
slides)
HTF Chap. 14.1-14.3
(
HW4out)
Mar 28
PR
Unsupervised Learning: Clustering: Mixture of Gaussians, Expectation Maximization (
slides)
CB Chap. 9
Apr 02
PR
Unsupervised Learning: Latent Variable Models (
slides)
CB Chap. 9
Apr 04
PR
Unsupervised Learning: Graphical Models (
slides)
KM Chap. 10, 19, 20
Module: Sequence Models
Apr 11
MV
Sequence Models: Hidden Markov Models (
slides)
KM Chap. 17
HW 4 due/
HW 5 out
Apr 16
MV
Sequence Models: State Space Models, other time series models (
slides)
KM Chap. 18
Module: Representation Learning
Apr 16
TBD/PR
Representation Learning: Feature Transformation, Random Features, PCA (
slides)
HTF Chap. 14.5
Apr 18
TBD/MV
Representation Learning: PCA Contd, ICA (
slides)
HTF Chap. 14.7
Module: Reinforcement Learning
Apr 23
MV
RL: MDPs, Value Iteration, Q Learning (
slides)
HW 5 due
Apr 25
MV
RL: Q learning in non-det domains, Deep RL (
slides)
Apr 30
PR
Foundations: Statistical Guarantees for Empirical Risk Minimization (
slides)
May 2
Final Project Presentations