Tentative Schedule
Date
Inst.
Topic
Readings
Notes
Module: Foundations
Aug 27
ZB
Intro, Three Axes of ML: Data, Algorithms, Tasks, MLE (
slides)
KM Chap. 1
Aug 29
ZB
Bayesian Estimation, MAP, Decision Theory, Model-free, Risk Minimization (
slides,
notes)
KM Chap 2, 5, 6,
TM Chap 6
Sept 3
No Class, Labor Day
Sept 5
ZB
Non-parametric Models: K nearest neighbors, Kernel regression (
slides,
notes)
TM Chap. 8
HTF Chap. 6, 13
KM Chap. 14
HW1 out
Sept 10
No Class, Jewish New Year
Module: Prediction, Parametric Methods
Sept 12
ZB
Regression: Linear Regression (
slides, notes
(1),
(2))
CB Chap. 3
Sept 17
PR
Regularized, Polynomial, Logistic Regression (
slides,
notes)
CB Chap. 4
Sept 19
PR
Decision Trees (
slides)
TM Chap. 3
HTF Chap. 9
HW 1 due/
HW2 out
Sept 24
PR
Naive Bayes, Generative vs Discriminative (
slides)
CB Chap. 4
Sept 26
PR
Neural Networks and Deep Learning (
slides)
CB Chap. 5
KM Chap. 28
Oct 1
PR
Neural Networks and Deep Learning, I, II (
slides,
notes)
CB Chap. 5
KM Chap. 28
Oct 3
ZB
Support Vector Machines 1 (
slides,
notes)
CB Chap. 6, 7
HW 2 due/
HW3 out
Oct 8
ZB
Support Vector Machines 2 (
slides,
notes)
CB Chap. 6, 7
Oct 10
ZB
Boosting, Surrogate Losses, Ensemble Methods (
slides,
notes)
HTF Chap 10
Module: Unsupervised Learning
Oct 15
ZB
Clustering, Kmeans (
slides,
notes)
HTF Chap. 14.1-14.3
Oct 17
ZB
Clustering: Mixture of Gaussians, Expectation Maximization (
slides,
notes)
CB Chap 9
HW 3 due
Oct 22
Midterm 17:00 - 19:00 Location: Rashid Auditorium
Module: Theoretical considerations
Oct 24
PR
Generalization, Model Selection (
slides)
HTF Chap. 7
Project topic selection
Oct 29
PR
Learning Theory: Statistical Guarantees for Empirical Risk Minimization (
slides)
Module: Representation Learning
Oct 31
Guest
Representation Learning: Feature Transformation, Random Features, PCA (
slides)
HTF Chap. 14.5
HW4 out
Nov 5
PR
Representation Learning: PCA Continued, ICA (
slides)
HTF Chap. 14.7
Nov 7
PR
Graphical Models: Representation (
slides)
KM Chap. 10, 19, 20
Project Proposal Submission
Module: Graphical and Sequence Models
Nov 12
PR
Graphical Models: Inference (
slides)
KM Chap. 10, 19, 20
Nov 14
PR
Graphical Models: Learning (
slides)
KM Chap. 10, 19, 20
HW 4 due
Nov 19
ZB
Sequence Models: HMMs (
slides)
KM Chap. 17
Nov 21
No Class, Thanksgiving
Nov 26
BOTH
Industry lecture
Nov 28
ZB
Sequence Models: State Space Models, other time series models (
slides1,
slides2)
KM Chap. 18
Module: Actions
Dec 3
ZB
Reinforcement Learning (
slides1)
TM Chap 13
Dec 5
Exam 2
Dec 10
Final Project Presentations
Dec 13
Final Projects Due