Through hardware engineering projects, researchers in the Carnegie Mellon-Intel Claytronics Project investigate the effects of scale on micro-electro-mechanical systems and model concepts for manufacturable, nanoscale modular robots capable of self-assembly.
Catoms created from this research to populate claytronic ensembles will be less than a millimeter in size, and the challenge in designing and manufacturing them draws the CMU-Intel Research team into a scale of engineering where have never been built. The team of research scientists, engineers, technicians and students who design these devices are testing concepts that cross the frontiers of computer science, modular robotics and systems nanotechnology.
The team of research scientists, engineers, technicians and graduate and undergraduate students assembled at Carnegie Mellon and in the Pittsburgh Intel Lab to design these devices is testing the performance of concepts beyond boundaries commonly believed to prevent the engineering of such a small scale, self-actuating module that combines in huge numbers to create cooperative patterns of work.
At the current stage of design, claytronics hardware operates from macroscale designs with devices that are much larger than the tiny modular robots that set the goals of this engineering research. Such devices are designed to test concepts for sub-millimeter scale modules and to elucidate crucial effects of the physical and electrical forces that affect nanoscale robots.
Each section devoted to an individual hardware project provides an overview of the basic functionality of the device and its relationship to the study of claytronics. In addition, each project page is paired with a page of design notes that offer more detail on the steps in building the device.
As these creative systems have evolved in the Carnegie Mellon-Intel Claytronics Hardware Lab, they have prepared the path for development of a millimeter scale module that will represent the creation of a self-actuating catom - a device that can compute, move, and communicate - at the nano-scale.
With the millimeter scale modular robot, the Claytronics Hardware Lab will demonstrate the feasibility of manufacturing catoms in the quantities needed to produce dynamic 3-dimensional representations of original objects.