Select Evidence Variables | |||
---|---|---|---|
Cloudy | |||
Sprinkler | |||
Rainy | |||
Wet Grass | |||
K value for Gibbs Sampling |
def gibbs_sampling(graph,N):
for n in range(N):
randomly initialize the sample
for gibbs_iter in range(k):
set Xi to a random non-evidence node
sample Xi from P(Xi | all nodes)
record (x1,x2,x3,x4)
Cloudy | Sprinkler | Rain | Wet Grass | Count N(C,S,R,W) |
Approximate P(S,W|+c,-r) |
Exact P(S,W|+c,-r) |
---|---|---|---|---|---|---|
+c | +s | +r | +w | 0 | 0 | 0 |
+c | +s | +r | -w | 0 | 0 | 0 |
+c | +s | -r | +w | 0 | 0 | 0 |
+c | +s | -r | -w | 0 | 0 | 0 |
+c | -s | +r | +w | 0 | 0 | 0 |
+c | -s | +r | -w | 0 | 0 | 0 |
+c | -s | -r | +w | 0 | 0 | 0 |
+c | -s | -r | -w | 0 | 0 | 0 |
-c | +s | +r | +w | 0 | 0 | 0 |
-c | +s | +r | -w | 0 | 0 | 0 |
-c | +s | -r | +w | 0 | 0 | 0 |
-c | +s | -r | -w | 0 | 0 | 0 |
-c | -s | +r | +w | 0 | 0 | 0 |
-c | -s | +r | -w | 0 | 0 | 0 |
-c | -s | -r | +w | 0 | 0 | 0 |
-c | -s | -r | -w | 0 | 0 | 0 |
Local Variables | |
---|---|
Current Sample | (?,?,?,?) |
Current Node | None |
Current Iteration (gibbs_iter) | 0 |
Sample Number (n) | 0 |
Cloudy | Sprinkler | Rain | Wet Grass | Count N(C,S,R,W) |
Number of Samples | Less Cycles Gibbs Probability (gibbs_iter = 5) |
Approximate Prob of Sample | Exact Prob of Sample |
---|---|---|---|---|---|---|---|---|
+c | +s | +r | +w | 0 | 0 | 0 | 0 | 0 |
+c | +s | +r | -w | 0 | 0 | 0 | 0 | 0 |
+c | +s | -r | +w | 0 | 0 | 0 | 0 | 0 |
+c | +s | -r | -w | 0 | 0 | 0 | 0 | 0 |
+c | -s | +r | +w | 0 | 0 | 0 | 0 | 0 |
+c | -s | +r | -w | 0 | 0 | 0 | 0 | 0 |
+c | -s | -r | +w | 0 | 0 | 0 | 0 | 0 |
+c | -s | -r | -w | 0 | 0 | 0 | 0 | 0 |
-c | +s | +r | +w | 0 | 0 | 0 | 0 | 0 |
-c | +s | +r | -w | 0 | 0 | 0 | 0 | 0 |
-c | +s | -r | +w | 0 | 0 | 0 | 0 | 0 |
-c | +s | -r | -w | 0 | 0 | 0 | 0 | 0 |
-c | -s | +r | +w | 0 | 0 | 0 | 0 | 0 |
-c | -s | +r | -w | 0 | 0 | 0 | 0 | 0 |
-c | -s | -r | +w | 0 | 0 | 0 | 0 | 0 |
-c | -s | -r | -w | 0 | 0 | 0 | 0 | 0 |