I have a class with two class methods (using the classmethod()
function) for getting and setting what is essentially a static variable. I tried to use the property()
function with these, but it results in an error. I was able to reproduce the error with the following in the interpreter:
class Foo(object):
_var = 5
@classmethod
def getvar(cls):
return cls._var
@classmethod
def setvar(cls, value):
cls._var = value
var = property(getvar, setvar)
I can demonstrate the class methods, but they don't work as properties:
>>> f = Foo()
>>> f.getvar()
5
>>> f.setvar(4)
>>> f.getvar()
4
>>> f.var
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: 'classmethod' object is not callable
>>> f.var=5
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: 'classmethod' object is not callable
Is it possible to use the property()
function with @classmethod
decorated functions?
19 Answers 19
3.8 < Python < 3.11
Can use both decorators together. See this answer.
Python 2 and python 3 (works in 3.9-3.10 too)
A property is created on a class but affects an instance. So if you want a classmethod
property, create the property on the metaclass.
>>> class foo(object):
... _var = 5
... class __metaclass__(type): # Python 2 syntax for metaclasses
... pass
... @classmethod
... def getvar(cls):
... return cls._var
... @classmethod
... def setvar(cls, value):
... cls._var = value
...
>>> foo.__metaclass__.var = property(foo.getvar.im_func, foo.setvar.im_func)
>>> foo.var
5
>>> foo.var = 3
>>> foo.var
3
But since you're using a metaclass anyway, it will read better if you just move the classmethods in there.
>>> class foo(object):
... _var = 5
... class __metaclass__(type): # Python 2 syntax for metaclasses
... @property
... def var(cls):
... return cls._var
... @var.setter
... def var(cls, value):
... cls._var = value
...
>>> foo.var
5
>>> foo.var = 3
>>> foo.var
3
or, using Python 3's metaclass=...
syntax, and the metaclass defined outside of the foo
class body, and the metaclass responsible for setting the initial value of _var
:
>>> class foo_meta(type):
... def __init__(cls, *args, **kwargs):
... cls._var = 5
... @property
... def var(cls):
... return cls._var
... @var.setter
... def var(cls, value):
... cls._var = value
...
>>> class foo(metaclass=foo_meta):
... pass
...
>>> foo.var
5
>>> foo.var = 3
>>> foo.var
3
12 Comments
class Foo(metaclass=...)
syntax.foo
in this case), just on the class itself -- by virtue of how metaclasses work.Update: The ability to chain @classmethod
and @property
was removed in Python 3.13 😕.
In Python 3.9 You could use them together, but (as noted in @xgt's comment) it was deprecated in Python 3.11, so it is not longer supported (but it may work for a while or reintroduced at some point).
Check the version remarks here:
https://docs.python.org/3.11/library/functions.html#classmethod
However, it used to work like so:
class G:
@classmethod
@property
def __doc__(cls):
return f'A doc for {cls.__name__!r}'
Order matters - due to how the descriptors interact, @classmethod
has to be on top.
25 Comments
@classmethod @property @functools.cache
to get the same behavior@classproperty
together with @property
any longer: docs.python.org/3.11/library/… I hope this dead-simple read-only @classproperty
decorator would help somebody looking for classproperties.
class classproperty(property):
def __get__(self, owner_self, owner_cls):
return self.fget(owner_cls)
class C(object):
@classproperty
def x(cls):
return 1
assert C.x == 1
assert C().x == 1
10 Comments
class D(C): x = 2; assert D.x == 2
__set__
that raises an ValueError
to prevent override.AttributeError
, and that only works to block C().x = val
, not C.x = val
Reading the Python 2.2 release notes, I find the following.
The get method [of a property] won't be called when the property is accessed as a class attribute (C.x) instead of as an instance attribute (C().x). If you want to override the __get__ operation for properties when used as a class attribute, you can subclass property - it is a new-style type itself - to extend its __get__ method, or you can define a descriptor type from scratch by creating a new-style class that defines __get__, __set__ and __delete__ methods.
NOTE: The below method doesn't actually work for setters, only getters.
Therefore, I believe the prescribed solution is to create a ClassProperty as a subclass of property.
class ClassProperty(property):
def __get__(self, cls, owner):
return self.fget.__get__(None, owner)()
class foo(object):
_var=5
def getvar(cls):
return cls._var
getvar=classmethod(getvar)
def setvar(cls,value):
cls._var=value
setvar=classmethod(setvar)
var=ClassProperty(getvar,setvar)
assert foo.getvar() == 5
foo.setvar(4)
assert foo.getvar() == 4
assert foo.var == 4
foo.var = 3
assert foo.var == 3
However, the setters don't actually work:
foo.var = 4
assert foo.var == foo._var # raises AssertionError
foo._var
is unchanged, you've simply overwritten the property with a new value.
You can also use ClassProperty
as a decorator:
class foo(object):
_var = 5
@ClassProperty
@classmethod
def var(cls):
return cls._var
@var.setter
@classmethod
def var(cls, value):
cls._var = value
assert foo.var == 5
5 Comments
self.fget(owner)
and remove the need to have to use a @classmethod
at all here? (that's what classmethod
does, translate .__get__(instance, owner)(*args, **kwargs)
to function(owner, *args, **kwargs)
calls, via an intermediary; properties don't need the intermediary).foo.var = 3
assignment doesn't actually go through the property, and instead has simply replaced the property object on foo
with an integer. If you added assert isinstance(foo.__dict__['var'], ClassProperty)
calls between your assertions you'd see that fail after foo.var = 3
is executed.instance.attr
, instance.attr = value
and del instance.attr
will all bind the descriptor found on type(instance)
, but while classobj.attr
binds, classobj.attr = value
and del classobj.attr
do not and instead replace or delete the descriptor object itself). You need a metaclass to support setting and deleting (making the class object the instance, and the metaclass the type).Is it possible to use the property() function with classmethod decorated functions?
No.
However, a classmethod is simply a bound method (a partial function) on a class accessible from instances of that class.
Since the instance is a function of the class and you can derive the class from the instance, you can can get whatever desired behavior you might want from a class-property with property
:
class Example(object):
_class_property = None
@property
def class_property(self):
return self._class_property
@class_property.setter
def class_property(self, value):
type(self)._class_property = value
@class_property.deleter
def class_property(self):
del type(self)._class_property
This code can be used to test - it should pass without raising any errors:
ex1 = Example()
ex2 = Example()
ex1.class_property = None
ex2.class_property = 'Example'
assert ex1.class_property is ex2.class_property
del ex2.class_property
assert not hasattr(ex1, 'class_property')
And note that we didn't need metaclasses at all - and you don't directly access a metaclass through its classes' instances anyways.
writing a @classproperty
decorator
You can actually create a classproperty
decorator in just a few lines of code by subclassing property
(it's implemented in C, but you can see equivalent Python here):
class classproperty(property):
def __get__(self, obj, objtype=None):
return super(classproperty, self).__get__(objtype)
def __set__(self, obj, value):
super(classproperty, self).__set__(type(obj), value)
def __delete__(self, obj):
super(classproperty, self).__delete__(type(obj))
Then treat the decorator as if it were a classmethod combined with property:
class Foo(object):
_bar = 5
@classproperty
def bar(cls):
"""this is the bar attribute - each subclass of Foo gets its own.
Lookups should follow the method resolution order.
"""
return cls._bar
@bar.setter
def bar(cls, value):
cls._bar = value
@bar.deleter
def bar(cls):
del cls._bar
And this code should work without errors:
def main():
f = Foo()
print(f.bar)
f.bar = 4
print(f.bar)
del f.bar
try:
f.bar
except AttributeError:
pass
else:
raise RuntimeError('f.bar must have worked - inconceivable!')
help(f) # includes the Foo.bar help.
f.bar = 5
class Bar(Foo):
"a subclass of Foo, nothing more"
help(Bar) # includes the Foo.bar help!
b = Bar()
b.bar = 'baz'
print(b.bar) # prints baz
del b.bar
print(b.bar) # prints 5 - looked up from Foo!
if __name__ == '__main__':
main()
But I'm not sure how well-advised this would be. An old mailing list article suggests it shouldn't work.
Getting the property to work on the class:
The downside of the above is that the "class property" isn't accessible from the class, because it would simply overwrite the data descriptor from the class __dict__
.
However, we can override this with a property defined in the metaclass __dict__
. For example:
class MetaWithFooClassProperty(type):
@property
def foo(cls):
"""The foo property is a function of the class -
in this case, the trivial case of the identity function.
"""
return cls
And then a class instance of the metaclass could have a property that accesses the class's property using the principle already demonstrated in the prior sections:
class FooClassProperty(metaclass=MetaWithFooClassProperty):
@property
def foo(self):
"""access the class's property"""
return type(self).foo
And now we see both the instance
>>> FooClassProperty().foo
<class '__main__.FooClassProperty'>
and the class
>>> FooClassProperty.foo
<class '__main__.FooClassProperty'>
have access to the class property.
Comments
Luckily, it's easy with the metaclass
kwarg:
class FooProperties(type):
@property
def var(cls):
return cls._var
class Foo(object, metaclass=FooProperties):
_var = 'FOO!'
Then,
>>> Foo.var
'FOO!'
This works in any version of Python 3, see @Amit Portnoy's answer for an even cleaner method in Python 3.9 or newer.
6 Comments
Foo
is an instance of its metaclass, and @property
can be used for its methods just as it can for those of instances of Foo
.Foo.__new__
. Though at that point it might be worth either using getattribute instead, or questioning if pretending a language feature exists is really the approach you want to take at all.There is no reasonable way to make this "class property" system to work in Python.
Here is one unreasonable way to make it work. You can certainly make it more seamless with increasing amounts of metaclass magic.
class ClassProperty(object):
def __init__(self, getter, setter):
self.getter = getter
self.setter = setter
def __get__(self, cls, owner):
return getattr(cls, self.getter)()
def __set__(self, cls, value):
getattr(cls, self.setter)(value)
class MetaFoo(type):
var = ClassProperty('getvar', 'setvar')
class Foo(object):
__metaclass__ = MetaFoo
_var = 5
@classmethod
def getvar(cls):
print "Getting var =", cls._var
return cls._var
@classmethod
def setvar(cls, value):
print "Setting var =", value
cls._var = value
x = Foo.var
print "Foo.var = ", x
Foo.var = 42
x = Foo.var
print "Foo.var = ", x
The knot of the issue is that properties are what Python calls "descriptors". There is no short and easy way to explain how this sort of metaprogramming works, so I must point you to the descriptor howto.
You only ever need to understand this sort of things if you are implementing a fairly advanced framework. Like a transparent object persistence or RPC system, or a kind of domain-specific language.
However, in a comment to a previous answer, you say that you
need to modify an attribute that in such a way that is seen by all instances of a class, and in the scope from which these class methods are called does not have references to all instances of the class.
It seems to me, what you really want is an Observer design pattern.
4 Comments
Setting it only on the meta class doesn't help if you want to access the class property via an instantiated object, in this case you need to install a normal property on the object as well (which dispatches to the class property). I think the following is a bit more clear:
#!/usr/bin/python
class classproperty(property):
def __get__(self, obj, type_):
return self.fget.__get__(None, type_)()
def __set__(self, obj, value):
cls = type(obj)
return self.fset.__get__(None, cls)(value)
class A (object):
_foo = 1
@classproperty
@classmethod
def foo(cls):
return cls._foo
@foo.setter
@classmethod
def foo(cls, value):
cls.foo = value
a = A()
print a.foo
b = A()
print b.foo
b.foo = 5
print a.foo
A.foo = 10
print b.foo
print A.foo
Comments
Half a solution, __set__ on the class does not work, still. The solution is a custom property class implementing both a property and a staticmethod
class ClassProperty(object):
def __init__(self, fget, fset):
self.fget = fget
self.fset = fset
def __get__(self, instance, owner):
return self.fget()
def __set__(self, instance, value):
self.fset(value)
class Foo(object):
_bar = 1
def get_bar():
print 'getting'
return Foo._bar
def set_bar(value):
print 'setting'
Foo._bar = value
bar = ClassProperty(get_bar, set_bar)
f = Foo()
#__get__ works
f.bar
Foo.bar
f.bar = 2
Foo.bar = 3 #__set__ does not
Comments
Because I need to modify an attribute that in such a way that is seen by all instances of a class, and in the scope from which these class methods are called does not have references to all instances of the class.
Do you have access to at least one instance of the class? I can think of a way to do it then:
class MyClass (object):
__var = None
def _set_var (self, value):
type (self).__var = value
def _get_var (self):
return self.__var
var = property (_get_var, _set_var)
a = MyClass ()
b = MyClass ()
a.var = "foo"
print b.var
Comments
Give this a try, it gets the job done without having to change/add a lot of existing code.
>>> class foo(object):
... _var = 5
... def getvar(cls):
... return cls._var
... getvar = classmethod(getvar)
... def setvar(cls, value):
... cls._var = value
... setvar = classmethod(setvar)
... var = property(lambda self: self.getvar(), lambda self, val: self.setvar(val))
...
>>> f = foo()
>>> f.var
5
>>> f.var = 3
>>> f.var
3
The property
function needs two callable
arguments. give them lambda wrappers (which it passes the instance as its first argument) and all is well.
1 Comment
For a functional approach pre Python 3.9 you can use this:
def classproperty(fget):
return type(
'classproperty',
(),
{'__get__': lambda self, _, cls: fget(cls), '__module__': None}
)()
class Item:
a = 47
@classproperty
def x(cls):
return cls.a
Item.x
Comments
Here's a solution which should work for both access via the class and access via an instance which uses a metaclass.
In [1]: class ClassPropertyMeta(type):
...: @property
...: def prop(cls):
...: return cls._prop
...: def __new__(cls, name, parents, dct):
...: # This makes overriding __getattr__ and __setattr__ in the class impossible, but should be fixable
...: dct['__getattr__'] = classmethod(lambda cls, attr: getattr(cls, attr))
...: dct['__setattr__'] = classmethod(lambda cls, attr, val: setattr(cls, attr, val))
...: return super(ClassPropertyMeta, cls).__new__(cls, name, parents, dct)
...:
In [2]: class ClassProperty(object):
...: __metaclass__ = ClassPropertyMeta
...: _prop = 42
...: def __getattr__(self, attr):
...: raise Exception('Never gets called')
...:
In [3]: ClassProperty.prop
Out[3]: 42
In [4]: ClassProperty.prop = 1
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-4-e2e8b423818a> in <module>()
----> 1 ClassProperty.prop = 1
AttributeError: can't set attribute
In [5]: cp = ClassProperty()
In [6]: cp.prop
Out[6]: 42
In [7]: cp.prop = 1
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-7-e8284a3ee950> in <module>()
----> 1 cp.prop = 1
<ipython-input-1-16b7c320d521> in <lambda>(cls, attr, val)
6 # This makes overriding __getattr__ and __setattr__ in the class impossible, but should be fixable
7 dct['__getattr__'] = classmethod(lambda cls, attr: getattr(cls, attr))
----> 8 dct['__setattr__'] = classmethod(lambda cls, attr, val: setattr(cls, attr, val))
9 return super(ClassPropertyMeta, cls).__new__(cls, name, parents, dct)
AttributeError: can't set attribute
This also works with a setter defined in the metaclass.
Comments
I found one clean solution to this problem. It's a package called classutilities (pip install classutilities
), see the documentation here on PyPi.
Consider example:
import classutilities
class SomeClass(classutilities.ClassPropertiesMixin):
_some_variable = 8 # Some encapsulated class variable
@classutilities.classproperty
def some_variable(cls): # class property getter
return cls._some_variable
@some_variable.setter
def some_variable(cls, value): # class property setter
cls._some_variable = value
You can use it on both class level and instance level:
# Getter on class level:
value = SomeClass.some_variable
print(value) # >>> 8
# Getter on instance level
inst = SomeClass()
value = inst.some_variable
print(value) # >>> 8
# Setter on class level:
new_value = 9
SomeClass.some_variable = new_value
print(SomeClass.some_variable) # >>> 9
print(SomeClass._some_variable) # >>> 9
# Setter on instance level
inst = SomeClass()
inst.some_variable = new_value
print(SomeClass.some_variable) # >>> 9
print(SomeClass._some_variable) # >>> 9
print(inst.some_variable) # >>> 9
print(inst._some_variable) # >>> 9
As you can see, it works correctly under all circumstances.
1 Comment
@classmethod
decorator under both @classproperty
and .setter
.If you need the type hints, here's the answer (works with pyright):
from multiprocessing import RLock
from typing import TypeVar, Callable, Generic, Type
GetterReturnType = TypeVar("GetterReturnType")
class classproperty(Generic[GetterReturnType]):
def __init__(self, func: Callable[..., GetterReturnType]):
if isinstance(func, (classmethod, staticmethod)):
fget = func
else:
fget = classmethod(func)
self.fget = fget
def __get__(self, obj, klass=None) -> GetterReturnType:
if klass is None:
klass = type(obj)
return self.fget.__get__(obj, klass)()
If you need cached_classproperty
(refer to the implementation of cached_property
):
_NOT_FOUND = object()
class cached_classproperty(Generic[GetterReturnType], classproperty[GetterReturnType]):
def __init__(self, func: Callable[..., GetterReturnType]):
super().__init__(func)
self.lock = RLock()
def __set_name__(self, owner, name):
self.attrname = f"__cached_classproperty_{name}"
def __get__(self, obj, klass=None) -> GetterReturnType:
val = getattr(klass, self.attrname, _NOT_FOUND)
if val is _NOT_FOUND:
with self.lock:
# check if another thread filled cache while we awaited lock
val = getattr(klass, self.attrname, _NOT_FOUND)
if val is _NOT_FOUND:
val = super().__get__(obj, klass)
setattr(klass, self.attrname, val)
return val # pyright: ignore[reportReturnType]
Comments
Based on https://stackoverflow.com/a/1800999/2290820:
class MetaProperty(type):
def __init__(cls, *args, **kwargs):
super()
@property
def praparty(cls):
return cls._var
@praparty.setter
def praparty(cls, val):
cls._var = val
class A(metaclass=MetaProperty):
_var = 5
print(A.praparty)
A.praparty = 6
print(A.praparty)
Comments
I found a method to define a classproperty valid with Python 2 and 3.
from future.utils import with_metaclass
class BuilderMetaClass(type):
@property
def load_namespaces(self):
return (self.__sourcepath__)
class BuilderMixin(with_metaclass(BuilderMetaClass, object)):
__sourcepath__ = 'sp'
print(BuilderMixin.load_namespaces)
1 Comment
Here is my solution that also caches the class property
class class_property(object):
# this caches the result of the function call for fn with cls input
# use this as a decorator on function methods that you want converted
# into cached properties
def __init__(self, fn):
self._fn_name = fn.__name__
if not isinstance(fn, (classmethod, staticmethod)):
fn = classmethod(fn)
self._fn = fn
def __get__(self, obj, cls=None):
if cls is None:
cls = type(obj)
if (
self._fn_name in vars(cls) and
type(vars(cls)[self._fn_name]).__name__ != "class_property"
):
return vars(cls)[self._fn_name]
else:
value = self._fn.__get__(obj, cls)()
setattr(cls, self._fn_name, value)
return value
Comments
Here's my suggestion. Don't use class methods.
Seriously.
What's the reason for using class methods in this case? Why not have an ordinary object of an ordinary class?
If you simply want to change the value, a property isn't really very helpful is it? Just set the attribute value and be done with it.
A property should only be used if there's something to conceal -- something that might change in a future implementation.
Maybe your example is way stripped down, and there is some hellish calculation you've left off. But it doesn't look like the property adds significant value.
The Java-influenced "privacy" techniques (in Python, attribute names that begin with _) aren't really very helpful. Private from whom? The point of private is a little nebulous when you have the source (as you do in Python.)
The Java-influenced EJB-style getters and setters (often done as properties in Python) are there to facilitate Java's primitive introspection as well as to pass muster with the static language compiler. All those getters and setters aren't as helpful in Python.