%gessel64.tex: The number of 1...d-avoiding permutations of length d+r for SYMBOLIC d but numeric r %Plain TeX %begin macros \input eplain \def\L{{\cal L}} \baselineskip=14pt \parskip=10pt \def\halmos{\hbox{\vrule height0.15cm width0.01cm\vbox{\hrule height 0.01cm width0.2cm \vskip0.15cm \hrule height 0.01cm width0.2cm}\vrule height0.15cm width 0.01cm}} \font\eightrm=cmr8 \font\sixrm=cmr6 \font\eighttt=cmtt8 \magnification=\magstephalf \def\W{{\cal W}} \def\P{{\cal P}} \def\Q{{\cal Q}} \def1円{{\overline{1}}} \def2円{{\overline{2}}} \parindent=0pt \overfullrule=0in \def\Tilde{\char126\relax} \def\frac#1#2{{#1 \over #2}} %\headline={\rm \ifodd\pageno \RightHead \else \LeftHead \fi} %\def\RightHead{\centerline{ %Title %}} %\def\LeftHead{ \centerline{Doron Zeilberger}} %end macros \bf \centerline { The Number of 1...d-Avoiding Permutations of Length d+r for SYMBOLIC d but Numeric r } \rm \bigskip \centerline {\it By Shalosh B. EKHAD, Nathaniel SHAR, and Doron ZEILBERGER} \bigskip \qquad \qquad {\it Dedicated to Ira Martin GESSEL (b. April 9, 1951), on his millionth$_2$ birthday} \bigskip {\bf Preface: How many permutations are there of length googol+30 avoiding an increasing subsequence of length googol?} This number is way too big for our physical universe, but the number of permutations of length googol+30 that {\it contain} at least one increasing subsequence of length googol is 3769987628815905643852921525646105664146833823621994801456991357113502936781270538054719048039675278 0769193354371721350001524610578097700045972792823897290959624203896101981952929640805170129282073883 4740018807571147534091229951249435913149171795302592312477456091277812321956212802204785578598020255 5625008802850838455586257402947256848380647181479993222566420025908679106917004348077812428261510240 6340176300585397517990032393036653951304924586489968650809789292291489270968710994809677050176596751 0725956202350750841376095024046396844968511243494784162014881795337835528626142808150073111101283361 0980701571937952824136796425017224636196853995950587943259043687431653922927840572864396105085190223 2582799067810378389890635196322425667467335158890500820128768331750855469963050322432973194472331947 0989825934469696079344723053679001130033667827524966034661782064851068214182454731365743413486729730 0631055444127725930013792836515384850702346797298406803049230145697433567004811555984158378611125895 0145768901348725550726037527669812626353266837685037397408862767082018239579392663024131792105407280 4788720840618514463465035392103884394981202007834724110094447116613439128758285044269471808502083275 6629374247928521501786839409853287740758570056230853738462527374534709641735458487560816949365616486 0695626913029699922648102091615529949414940648588048836485372758775808743231365617459515329190972398 7074543946415578728439994306071279654045146432379557541358408978156863172980419720839292761025261752 6805876626590163265795592248178664681630980893821587688413815206609216082514983787883386977226071420 21649147728993592578961422177700294482596740993986519357246959930668146505085270714475561150113747221 20887870047753358177316206263356927955729458754686550644432634687680282027976402772772483836117105473 48145611509228154510472000404130614639780926417137329939732465722014680564902839930824306834920414545 13874753600055252092001136814571329384587325582468487887244395295245585419188646792764252832159962029 69411649544372131053235387439446875434698793735121412796400236965732584484687219982898355145980291977 86269234486135973112564250247007239135280355775712267954726019033893771378762777423669196575295174512 96452587669725726144832740371782822308006170531910099265678141483622517144014107716217010098383839968 84507804590244720667406593929564134591547805793634468523934454328906756758701209765471514880572370759 09084331736216302289075177161806402089083889989467334293366576755423738845099552628279269937176915588 59427835870444539800644480052821630922331779937023228656305272974159931977365064817849361860909445301 08120140577436690007140701570599484176861047461052826774744899246746666909264578067076243923453088561 96698778069217767194382941365732112039412879713531991598317675682505439845424625600438225076973116586 49130213308514799728830764637172129004065611907475610401713008790972891409020362658741946509891832165 77016676670060012096109989093803820108650038852207775655317011335432185883307209708526943588264818977 37757381491860736859345865582855966329016368188788860428833268391323270593913089901528577501918097456 34879121424762765606213101234688450096506147759256582735622079237519547939943470930166182921645804027 12542798143388641167614178301190598174793878806944301625322109937912755282207791779022466004479258408 24462949592761349881316543422038699183826473525107075809508274778093413168220963984409028566362293900 40215415882419358649518674355414801095047413826040824566345129789426039221842088797052981439573736696 50223307930886494490895506612422266377009758720488022558779513425100432348926430427665125944987693089 42245751122706284028982754337386885459391626543570555162051612664363788373280457226691660908679569539 27163081562519904030045933274931742332018704568957075002591805894557106029373427199758644919233869688 59038428977769800021296515522194835877177597740437988812991749584835721786755293502620149338987031222 32518225184081589902714463624365018242747599082635817593737724580337688809342550695342366935036425354 91880914435376674876432270204764414065561382212425100253695336680109353578878041405262772638139124792 83216406483941960286265199599663254512526642623538896318838417766536461292705936611493062590853978024 18629266233934211681736693714241352634384615108485320700947811487618744149158225668175169324385259284 55634363409372944818437842421507459176260334046758894630063276039591166623100092626550628336007090706 43413326647797799377122631843882036054772111620148059377505229785356202259250047229187386576746999449 47405347907659143618050579417087497652165460185477043345636632204978226001800424273526341460220242548 683728799179065030083029494514450905531725089967903293290935500874548539339178735194085694882107486318 798833745852508207772876776458002804430766991660626376067637977770235404212193344610052823762990072265 783070820234545141480898874637486106893816774598214664007156038886731975384257202382 \quad . Hence the number of permutations of length googol+30ドル$ {\it avoiding} an increasing subsequence of length googol is $(googol+30)!$ {\it minus} the above small number. {\bf Counting the ``Bad Guys''} Recall that thanks to Robinson-Schensted ([Rob][Sc]), the number of permutations of length $n$ that do {\bf not} contain an increasing subsequence of length $d$ is given by $$ G_d(n):=\sum_{ {\lambda \vdash n} \atop {\#rows(\lambda)

AltStyle によって変換されたページ (->オリジナル) /