InverseDistanceTransform
InverseDistanceTransform [image]
gives the inverse distance transform of image, returning the result as a binary image.
Details and Options
- InverseDistanceTransform reconstructs a binary image from its distance transform or skeleton transform.
- The inverse distance transform is computed as the union of all disks centered around each pixel of the distance transform, taking the pixel value to be the radius.
- InverseDistanceTransform takes a DistanceFunction option. By default, the EuclideanDistance is used. Other possible settings are ManhattanDistance and ChessboardDistance .
Examples
open allclose allBasic Examples (1)
Reconstruct a shape from its skeleton transform:
Scope (2)
Reconstruct a rectangle:
Find the reduced medial axis:
Reconstruct from the medial axis, and show that the result is the same as the original input:
Options (3)
DistanceFunction (3)
Euclidean inverse distance transform:
Inverse distance transform using Manhattan distance:
Inverse distance transform using chessboard distance:
Applications (1)
Reconstruct a shape from a noisy distance transform image:
Tech Notes
Related Guides
History
Text
Wolfram Research (2010), InverseDistanceTransform, Wolfram Language function, https://reference.wolfram.com/language/ref/InverseDistanceTransform.html.
CMS
Wolfram Language. 2010. "InverseDistanceTransform." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/InverseDistanceTransform.html.
APA
Wolfram Language. (2010). InverseDistanceTransform. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/InverseDistanceTransform.html
BibTeX
@misc{reference.wolfram_2025_inversedistancetransform, author="Wolfram Research", title="{InverseDistanceTransform}", year="2010", howpublished="\url{https://reference.wolfram.com/language/ref/InverseDistanceTransform.html}", note=[Accessed: 31-March-2025 ]}
BibLaTeX
@online{reference.wolfram_2025_inversedistancetransform, organization={Wolfram Research}, title={InverseDistanceTransform}, year={2010}, url={https://reference.wolfram.com/language/ref/InverseDistanceTransform.html}, note=[Accessed: 31-March-2025 ]}