WOLFRAM

Enable JavaScript to interact with content and submit forms on Wolfram websites. Learn how
Wolfram Language & System Documentation Center

Hypergeometric1F1 [a,b,z]

is the Kummer confluent hypergeometric function TemplateBox[{a, b, z}, Hypergeometric1F1].

Details
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Numerical Evaluation  
Specific Values  
Visualization  
Show More Show More
Function Properties  
Differentiation  
Integration  
Series Expansions  
Integral Transforms  
Function Identities and Simplifications  
Function Representations  
Generalizations & Extensions  
Applications  
Properties & Relations  
See Also
Tech Notes
Related Guides
Related Links
History
Cite this Page

Hypergeometric1F1 [a,b,z]

is the Kummer confluent hypergeometric function TemplateBox[{a, b, z}, Hypergeometric1F1].

Details

  • Mathematical function, suitable for both symbolic and numerical manipulation.
  • The function has the series expansion TemplateBox[{a, b, z}, Hypergeometric1F1]=sum_(k=0)^(infty)TemplateBox[{a, k}, Pochhammer]/TemplateBox[{b, k}, Pochhammer]z^k/k!, where TemplateBox[{a, k}, Pochhammer] is the Pochhammer symbol.
  • For certain special arguments, Hypergeometric1F1 automatically evaluates to exact values.
  • Hypergeometric1F1 can be evaluated to arbitrary numerical precision.
  • Hypergeometric1F1 automatically threads over lists.
  • Hypergeometric1F1 can be used with Interval and CenteredInterval objects. »

Examples

open all close all

Basic Examples  (5)

Evaluate numerically:

Plot over a subset of the reals:

Plot over a subset of the complexes:

Series expansion at the origin:

Series expansion at Infinity :

Scope  (40)

Numerical Evaluation  (5)

Evaluate to high precision:

The precision of the output tracks the precision of the input:

Evaluate for complex arguments and parameters:

Evaluate Hypergeometric1F1 efficiently at high precision:

Compute worst-case guaranteed intervals using Interval and CenteredInterval objects:

Or compute average-case statistical intervals using Around :

Compute the elementwise values of an array:

Or compute the matrix Hypergeometric1F1 function using MatrixFunction :

Specific Values  (4)

Hypergeometric1F1 automatically evaluates to simpler functions for certain parameters:

Limiting values at infinity for some case of Hypergeometric1F1 :

Find a value of satisfying the equation TemplateBox[{{1, /, 2}, {sqrt(, 2, )}, x}, Hypergeometric1F1]=2:

Heun functions can be reduced to hypergeometric functions:

Visualization  (3)

Plot the Hypergeometric1F1 function:

Plot Hypergeometric1F1 as a function of its second parameter:

Plot the real part of TemplateBox[{1, {sqrt(, 2, )}, z}, Hypergeometric1F1]:

Plot the imaginary part of TemplateBox[{1, {sqrt(, 2, )}, z}, Hypergeometric1F1]:

Function Properties  (9)

Real domain of Hypergeometric1F1 :

Complex domain:

TemplateBox[{a, b, z}, Hypergeometric1F1] is an analytic function for real values of and b in TemplateBox[{}, Reals]:

For positive values of , it may or may not be analytic:

Hypergeometric1F1 is neither non-decreasing nor non-increasing except for special values:

TemplateBox[{{sqrt(, 3, )}, {sqrt(, 2, )}, z}, Hypergeometric1F1] is not injective:

TemplateBox[{{sqrt(, 3, )}, {sqrt(, 2, )}, z}, Hypergeometric1F1] is not surjective:

Hypergeometric1F1 is non-negative for specific values:

TemplateBox[{{sqrt(, 3, )}, {sqrt(, 2, )}, z}, Hypergeometric1F1] is neither non-negative nor non-positive:

TemplateBox[{a, b, z}, Hypergeometric1F1] has both singularity and discontinuity when is a negative integer:

TemplateBox[{{-, 2}, 1, z}, Hypergeometric1F1] is convex:

TemplateBox[{2, 1, z}, Hypergeometric1F1] is neither convex nor concave:

TraditionalForm formatting:

Differentiation  (3)

First derivative:

Higher derivatives:

Plot higher derivatives for and :

Formula for the ^(th) derivative:

Integration  (3)

Apply Integrate to Hypergeometric1F1 :

Definite integral of Hypergeometric1F1 :

More integrals:

Series Expansions  (4)

Taylor expansion for Hypergeometric1F1 :

Plot the first three approximations for TemplateBox[{{1, /, 2}, {sqrt(, 2, )}, x}, Hypergeometric1F1] around :

General term in the series expansion of Hypergeometric1F1 :

Expand Hypergeometric1F1 in a series around infinity:

Apply Hypergeometric1F1 to a power series:

Integral Transforms  (2)

Compute the Laplace transform using LaplaceTransform :

HankelTransform :

Function Identities and Simplifications  (3)

Argument simplification:

Sum of the Hypergeometric1F1 functions:

Recurrence identity:

Function Representations  (4)

Primary definition:

Relation to the LaguerreL polynomial:

Hypergeometric1F1 can be represented as a DifferentialRoot :

Hypergeometric1F1 can be represented in terms of MeijerG :

Generalizations & Extensions  (1)

Apply Hypergeometric1F1 to a power series:

Applications  (3)

Hydrogen atom radial wave function for continuous spectrum:

Compute the energy eigenvalue from the differential equation:

Closed form for Padé approximation of Exp to any order:

Compare with explicit approximants:

Solve a differential equation:

Properties & Relations  (2)

Integrate may give results involving Hypergeometric1F1 :

Use FunctionExpand to convert confluent hypergeometric functions:

Tech Notes

History

Introduced in 1988 (1.0) | Updated in 2021 (13.0) 2022 (13.1)

Wolfram Research (1988), Hypergeometric1F1, Wolfram Language function, https://reference.wolfram.com/language/ref/Hypergeometric1F1.html (updated 2022).

Text

Wolfram Research (1988), Hypergeometric1F1, Wolfram Language function, https://reference.wolfram.com/language/ref/Hypergeometric1F1.html (updated 2022).

CMS

Wolfram Language. 1988. "Hypergeometric1F1." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2022. https://reference.wolfram.com/language/ref/Hypergeometric1F1.html.

APA

Wolfram Language. (1988). Hypergeometric1F1. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/Hypergeometric1F1.html

BibTeX

@misc{reference.wolfram_2025_hypergeometric1f1, author="Wolfram Research", title="{Hypergeometric1F1}", year="2022", howpublished="\url{https://reference.wolfram.com/language/ref/Hypergeometric1F1.html}", note=[Accessed: 05-December-2025]}

BibLaTeX

@online{reference.wolfram_2025_hypergeometric1f1, organization={Wolfram Research}, title={Hypergeometric1F1}, year={2022}, url={https://reference.wolfram.com/language/ref/Hypergeometric1F1.html}, note=[Accessed: 05-December-2025]}

Top [フレーム]

AltStyle によって変換されたページ (->オリジナル) /