WOLFRAM

Enable JavaScript to interact with content and submit forms on Wolfram websites. Learn how
Wolfram Language & System Documentation Center

PrimeNu [n]

gives the number of distinct primes in n.

Details and Options
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Numerical Evaluation  
Symbolic Manipulation  
Options  
GaussianIntegers  
Applications  
Basic Applications  
Number Theory  
Properties & Relations  
Possible Issues  
Neat Examples  
See Also
Related Guides
History
Cite this Page

PrimeNu [n]

gives the number of distinct primes in n.

Details and Options

  • Integer mathematical function, suitable for both symbolic and numerical manipulation.
  • PrimeNu gives the number of distinct prime factors.
  • For a number with a unit and primes, PrimeNu [n] returns m.
  • With the setting GaussianIntegers->True , PrimeNu gives the number of Gaussian prime factors.
  • PrimeNu [m+I n] automatically works over Gaussian integers.

Examples

open all close all

Basic Examples  (2)

Compute PrimeNu at 24:

Plot the PrimeNu sequence for the first 100 numbers:

Scope  (9)

Numerical Evaluation  (4)

PrimeNu works over integers:

Gaussian integers:

Compute for large integers:

PrimeNu threads over lists:

Symbolic Manipulation  (5)

TraditionalForm formatting:

Reduce expressions:

Solve equalities:

Identify the PrimeNu sequence:

Dirichlet generating function of 2^PrimeNu :

Compare with DirichletTransform :

Options  (1)

GaussianIntegers  (1)

Compute PrimeNu over integers:

Gaussian integers:

Applications  (7)

Basic Applications  (2)

Table of the values of PrimeNu for the integers up to 100:

Histogram of the values of PrimeNu :

Number Theory  (5)

Use PrimeNu to test for a prime power:

Use PrimeNu to compute MoebiusMu and LiouvilleLambda for square-free numbers:

PrimeNu is related to MoebiusMu through the following formula:

Plot the average over values of PrimeNu for different ranges of integer arguments:

The Fourier statistics of the PrimeNu sequence:

Properties & Relations  (6)

Use FactorInteger to find the number of distinct prime factors:

PrimeNu is an additive function:

PrimeNu gives 1 for a prime power:

PrimeNu and PrimeOmega are equivalent when the argument is square free:

PrimeNu is always smaller than or equal to PrimeOmega :

If n is square free, PrimeNu is related to MoebiusMu and LiouvilleLambda :

Possible Issues  (1)

PrimeNu is not defined at 0:

Neat Examples  (2)

Plot the arguments of the Fourier transform of PrimeNu :

Plot the Ulam spiral of PrimeNu :

Wolfram Research (2008), PrimeNu, Wolfram Language function, https://reference.wolfram.com/language/ref/PrimeNu.html.

Text

Wolfram Research (2008), PrimeNu, Wolfram Language function, https://reference.wolfram.com/language/ref/PrimeNu.html.

CMS

Wolfram Language. 2008. "PrimeNu." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/PrimeNu.html.

APA

Wolfram Language. (2008). PrimeNu. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/PrimeNu.html

BibTeX

@misc{reference.wolfram_2025_primenu, author="Wolfram Research", title="{PrimeNu}", year="2008", howpublished="\url{https://reference.wolfram.com/language/ref/PrimeNu.html}", note=[Accessed: 04-December-2025]}

BibLaTeX

@online{reference.wolfram_2025_primenu, organization={Wolfram Research}, title={PrimeNu}, year={2008}, url={https://reference.wolfram.com/language/ref/PrimeNu.html}, note=[Accessed: 04-December-2025]}

Top [フレーム]

AltStyle によって変換されたページ (->オリジナル) /