WOLFRAM

Enable JavaScript to interact with content and submit forms on Wolfram websites. Learn how
Wolfram Language & System Documentation Center

HeavisideTheta [x]

represents the Heaviside theta function , equal to 0 for and 1 for .

HeavisideTheta [x1,x2,]

represents the multidimensional Heaviside theta function, which is 1 only if all of the xi are positive.

Details
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Numerical Evaluation  
Specific Values  
Visualization  
Show More Show More
Function Properties  
Differentiation  
Integration  
Integral Transforms  
Applications  
Properties & Relations  
Possible Issues  
Neat Examples  
See Also
Related Guides
Related Links
History
Cite this Page

HeavisideTheta [x]

represents the Heaviside theta function , equal to 0 for and 1 for .

HeavisideTheta [x1,x2,]

represents the multidimensional Heaviside theta function, which is 1 only if all of the xi are positive.

Details

Examples

open all close all

Basic Examples  (4)

Evaluate numerically:

Plot in one dimension:

Plot in two dimensions:

Differentiate to obtain DiracDelta :

Scope  (37)

Numerical Evaluation  (5)

Evaluate numerically:

HeavisideTheta always returns an exact result:

Evaluate efficiently at high precision:

Compute average-case statistical intervals using Around :

Compute the elementwise values of an array:

Or compute the matrix HeavisideTheta function using MatrixFunction :

Specific Values  (4)

As a distribution, HeavisideTheta does not have a specific value at 0:

Value at infinity:

Evaluate for symbolic parameters:

Find a value of x for which the HeavisideTheta [x]=1:

Visualization  (4)

Plot the HeavisideTheta function:

Visualize shifted HeavisideTheta functions:

Visualize the composition of HeavisideTheta with a periodic function:

Plot HeavisideTheta in three dimensions:

Function Properties  (9)

Function domain of HeavisideTheta :

It is restricted to real inputs:

Function range of HeavisideTheta :

HeavisideTheta has a jump discontinuity at the point :

HeavisideTheta is not an analytic function:

It has both singularities and discontinuities:

HeavisideTheta is not injective:

HeavisideTheta is not surjective:

HeavisideTheta is non-negative on its domain:

HeavisideTheta is neither convex nor concave:

TraditionalForm typesetting:

Differentiation  (4)

Differentiate the univariate HeavisideTheta :

Differentiate the multivariate HeavisideTheta :

Differentiate a composition involving HeavisideTheta :

Generate HeavisideTheta from an integral:

Verify the integral via differentiation:

Integration  (6)

Indefinite integral:

Integrate over finite domains:

Integrate over infinite domains:

Integrate the multivariate HeavisideTheta :

Numerical integration:

Integrate expressions containing symbolic derivatives of HeavisideTheta :

Integral Transforms  (5)

FourierTransform of HeavisideTheta :

FourierSeries :

Find the LaplaceTransform of HeavisideTheta :

The convolution of HeavisideTheta with itself:

The convolution of TemplateBox[{{x}}, HeavisideThetaSeq] with TemplateBox[{{{x, +, {1, /, 2}}}}, DiracDeltaSeq]-TemplateBox[{{{x, -, {1, /, 2}}}}, DiracDeltaSeq] is equal to TemplateBox[{{x}}, HeavisidePiSeq]:s

Applications  (7)

Solve the timeindependent Schrödinger equation with piecewise analytic potential:

Use DSolve with DiracDelta source term to find Green's function:

Solve the inhomogeneous ODE through convolution with Green's function:

Compare with the direct result from DSolve :

Model a uniform probability distribution:

Calculate the probability distribution for the sum of two uniformly distributed variables:

Plot the distributions for the sum:

Fundamental solution (Green's function) of the 1D wave equation:

Solution for a given source term:

Plot the solution:

Fundamental solution of the KleinGordon operator:

Visualize the fundamental solution (it is nonvanishing only in the forward light cone):

A cuspcontaining peakon solution of the CamassaHolm equation:

Check the solution:

Plot the solution:

Differentiate and integrate a piecewise-defined function in a lossless manner:

Differentiating and integrating recovers the original function:

Using Piecewise does not recover the original function:

Properties & Relations  (6)

The derivative of HeavisideTheta is a distribution:

The derivative of UnitStep is a piecewise function:

Expand HeavisideTheta into HeavisideTheta with simpler arguments:

Simplify expressions containing HeavisideTheta :

Use in integrals:

Use in Fourier transforms:

Use in Laplace transforms:

Possible Issues  (10)

HeavisideTheta stays unevaluated for vanishing argument:

PiecewiseExpand does not operate on HeavisideTheta because it is a distribution and not a piecewisedefined function:

The precision of the output does not track the precision of the input:

HeavisideTheta can stay unevaluated for numeric arguments:

Machineprecision numericalization of HeavisideTheta can give wrong results:

Use arbitraryprecision arithmetic to obtain the correct result:

A larger setting for $MaxExtraPrecision will not avoid the N::meprec message because the result is exact:

The functions UnitStep and HeavisideTheta are not mathematically equivalent:

Products of distributions with coincident singular support cannot be defined (no Colombeau algebra interpretation):

HeavisideTheta cannot be uniquely defined with complex arguments (no Sato hyperfunction interpretation):

Numerical routines can have problems with discontinuous functions:

Limit does not give HeavisideTheta as a limit of smooth functions:

Neat Examples  (1)

Form repeated convolution integrals starting with a product:

Wolfram Research (2007), HeavisideTheta, Wolfram Language function, https://reference.wolfram.com/language/ref/HeavisideTheta.html.

Text

Wolfram Research (2007), HeavisideTheta, Wolfram Language function, https://reference.wolfram.com/language/ref/HeavisideTheta.html.

CMS

Wolfram Language. 2007. "HeavisideTheta." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/HeavisideTheta.html.

APA

Wolfram Language. (2007). HeavisideTheta. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/HeavisideTheta.html

BibTeX

@misc{reference.wolfram_2025_heavisidetheta, author="Wolfram Research", title="{HeavisideTheta}", year="2007", howpublished="\url{https://reference.wolfram.com/language/ref/HeavisideTheta.html}", note=[Accessed: 05-December-2025]}

BibLaTeX

@online{reference.wolfram_2025_heavisidetheta, organization={Wolfram Research}, title={HeavisideTheta}, year={2007}, url={https://reference.wolfram.com/language/ref/HeavisideTheta.html}, note=[Accessed: 05-December-2025]}

Top [フレーム]

AltStyle によって変換されたページ (->オリジナル) /