pandas.wide_to_long#

pandas.wide_to_long(df, stubnames, i, j, sep='', suffix='\\d+')[source] #

Unpivot a DataFrame from wide to long format.

Less flexible but more user-friendly than melt.

With stubnames [‘A’, ‘B’], this function expects to find one or more group of columns with format A-suffix1, A-suffix2,..., B-suffix1, B-suffix2,... You specify what you want to call this suffix in the resulting long format with j (for example j=’year’)

Each row of these wide variables are assumed to be uniquely identified by i (can be a single column name or a list of column names)

All remaining variables in the data frame are left intact.

Parameters:
dfDataFrame

The wide-format DataFrame.

stubnamesstr or list-like

The stub name(s). The wide format variables are assumed to start with the stub names.

istr or list-like

Column(s) to use as id variable(s).

jstr

The name of the sub-observation variable. What you wish to name your suffix in the long format.

sepstr, default ""

A character indicating the separation of the variable names in the wide format, to be stripped from the names in the long format. For example, if your column names are A-suffix1, A-suffix2, you can strip the hyphen by specifying sep=’-’.

suffixstr, default ‘\d+’

A regular expression capturing the wanted suffixes. ‘\d+’ captures numeric suffixes. Suffixes with no numbers could be specified with the negated character class ‘\D+’. You can also further disambiguate suffixes, for example, if your wide variables are of the form A-one, B-two,.., and you have an unrelated column A-rating, you can ignore the last one by specifying suffix=’(!?one|two)’. When all suffixes are numeric, they are cast to int64/float64.

Returns:
DataFrame

A DataFrame that contains each stub name as a variable, with new index (i, j).

See also

melt

Unpivot a DataFrame from wide to long format, optionally leaving identifiers set.

pivot

Create a spreadsheet-style pivot table as a DataFrame.

DataFrame.pivot

Pivot without aggregation that can handle non-numeric data.

DataFrame.pivot_table

Generalization of pivot that can handle duplicate values for one index/column pair.

DataFrame.unstack

Pivot based on the index values instead of a column.

Notes

All extra variables are left untouched. This simply uses pandas.melt under the hood, but is hard-coded to "do the right thing" in a typical case.

Examples

>>> np.random.seed(123)
>>> df = pd.DataFrame(
...  {
...  "A1970": {0: "a", 1: "b", 2: "c"},
...  "A1980": {0: "d", 1: "e", 2: "f"},
...  "B1970": {0: 2.5, 1: 1.2, 2: 0.7},
...  "B1980": {0: 3.2, 1: 1.3, 2: 0.1},
...  "X": dict(zip(range(3), np.random.randn(3))),
...  }
... )
>>> df["id"] = df.index
>>> df
 A1970 A1980 B1970 B1980 X id
0 a d 2.5 3.2 -1.085631 0
1 b e 1.2 1.3 0.997345 1
2 c f 0.7 0.1 0.282978 2
>>> pd.wide_to_long(df, ["A", "B"], i="id", j="year")
...
 X A B
id year
0 1970 -1.085631 a 2.5
1 1970 0.997345 b 1.2
2 1970 0.282978 c 0.7
0 1980 -1.085631 d 3.2
1 1980 0.997345 e 1.3
2 1980 0.282978 f 0.1

With multiple id columns

>>> df = pd.DataFrame(
...  {
...  "famid": [1, 1, 1, 2, 2, 2, 3, 3, 3],
...  "birth": [1, 2, 3, 1, 2, 3, 1, 2, 3],
...  "ht1": [2.8, 2.9, 2.2, 2, 1.8, 1.9, 2.2, 2.3, 2.1],
...  "ht2": [3.4, 3.8, 2.9, 3.2, 2.8, 2.4, 3.3, 3.4, 2.9],
...  }
... )
>>> df
 famid birth ht1 ht2
0 1 1 2.8 3.4
1 1 2 2.9 3.8
2 1 3 2.2 2.9
3 2 1 2.0 3.2
4 2 2 1.8 2.8
5 2 3 1.9 2.4
6 3 1 2.2 3.3
7 3 2 2.3 3.4
8 3 3 2.1 2.9
>>> long_format = pd.wide_to_long(df, stubnames="ht", i=["famid", "birth"], j="age")
>>> long_format
...
 ht
famid birth age
1 1 1 2.8
 2 3.4
 2 1 2.9
 2 3.8
 3 1 2.2
 2 2.9
2 1 1 2.0
 2 3.2
 2 1 1.8
 2 2.8
 3 1 1.9
 2 2.4
3 1 1 2.2
 2 3.3
 2 1 2.3
 2 3.4
 3 1 2.1
 2 2.9

Going from long back to wide just takes some creative use of unstack

>>> wide_format = long_format.unstack()
>>> wide_format.columns = wide_format.columns.map("{0[0]}{0[1]}".format)
>>> wide_format.reset_index()
 famid birth ht1 ht2
0 1 1 2.8 3.4
1 1 2 2.9 3.8
2 1 3 2.2 2.9
3 2 1 2.0 3.2
4 2 2 1.8 2.8
5 2 3 1.9 2.4
6 3 1 2.2 3.3
7 3 2 2.3 3.4
8 3 3 2.1 2.9

Less wieldy column names are also handled

>>> np.random.seed(0)
>>> df = pd.DataFrame(
...  {
...  "A(weekly)-2010": np.random.rand(3),
...  "A(weekly)-2011": np.random.rand(3),
...  "B(weekly)-2010": np.random.rand(3),
...  "B(weekly)-2011": np.random.rand(3),
...  "X": np.random.randint(3, size=3),
...  }
... )
>>> df["id"] = df.index
>>> df
 A(weekly)-2010 A(weekly)-2011 B(weekly)-2010 B(weekly)-2011 X id
0 0.548814 0.544883 0.437587 0.383442 0 0
1 0.715189 0.423655 0.891773 0.791725 1 1
2 0.602763 0.645894 0.963663 0.528895 1 2
>>> pd.wide_to_long(df, ["A(weekly)", "B(weekly)"], i="id", j="year", sep="-")
...
 X A(weekly) B(weekly)
id year
0 2010 0 0.548814 0.437587
1 2010 1 0.715189 0.891773
2 2010 1 0.602763 0.963663
0 2011 0 0.544883 0.383442
1 2011 1 0.423655 0.791725
2 2011 1 0.645894 0.528895

If we have many columns, we could also use a regex to find our stubnames and pass that list on to wide_to_long

>>> stubnames = sorted(
...  set(
...  [
...  match[0]
...  for match in df.columns.str.findall(r"[A-B]\(.*\)").values
...  if match != []
...  ]
...  )
... )
>>> list(stubnames)
['A(weekly)', 'B(weekly)']

All of the above examples have integers as suffixes. It is possible to have non-integers as suffixes.

>>> df = pd.DataFrame(
...  {
...  "famid": [1, 1, 1, 2, 2, 2, 3, 3, 3],
...  "birth": [1, 2, 3, 1, 2, 3, 1, 2, 3],
...  "ht_one": [2.8, 2.9, 2.2, 2, 1.8, 1.9, 2.2, 2.3, 2.1],
...  "ht_two": [3.4, 3.8, 2.9, 3.2, 2.8, 2.4, 3.3, 3.4, 2.9],
...  }
... )
>>> df
 famid birth ht_one ht_two
0 1 1 2.8 3.4
1 1 2 2.9 3.8
2 1 3 2.2 2.9
3 2 1 2.0 3.2
4 2 2 1.8 2.8
5 2 3 1.9 2.4
6 3 1 2.2 3.3
7 3 2 2.3 3.4
8 3 3 2.1 2.9
>>> long_format = pd.wide_to_long(
...  df, stubnames="ht", i=["famid", "birth"], j="age", sep="_", suffix=r"\w+"
... )
>>> long_format
...
 ht
famid birth age
1 1 one 2.8
 two 3.4
 2 one 2.9
 two 3.8
 3 one 2.2
 two 2.9
2 1 one 2.0
 two 3.2
 2 one 1.8
 two 2.8
 3 one 1.9
 two 2.4
3 1 one 2.2
 two 3.3
 2 one 2.3
 two 3.4
 3 one 2.1
 two 2.9
On this page

This Page