Regularized Hypergeometric Function
Given a hypergeometric or generalized hypergeometric function _pF_q(a_1,...,a_p;b_1,...,b_q;z), the corresponding regularized hypergeometric function is defined by
| _pF^~_q(a_1,...,a_p;b_1,...,b_q;z)=(_pF_q(a_1,...,a_p;b_1,...,b_q;z))/(Gamma(b_1)...Gamma(b_q)), |
where Gamma(z) is a gamma function. Regularized hypergeometric functions are implemented in the Wolfram Language as the functions Hypergeometric0F1Regularized [b, z], Hypergeometric1F1Regularized [a, b, z], Hypergeometric2F1Regularized [a, b, c, z], and in general, HypergeometricPFQRegularized [{a1, ...ap}, {b1, ..., bq}, z].
See also
Confluent Hypergeometric Function of the First Kind, Confluent Hypergeometric Function of the Second Kind, Confluent Hypergeometric Limit Function, Generalized Hypergeometric Function, Hypergeometric FunctionRelated Wolfram sites
http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric0F1Regularized/, http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric1F1Regularized/, http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric2F1Regularized/, http://functions.wolfram.com/HypergeometricFunctions/HypergeometricPFQRegularized/Explore with Wolfram|Alpha
WolframAlpha
More things to try:
Cite this as:
Weisstein, Eric W. "Regularized Hypergeometric Function." From MathWorld--A Wolfram Resource. https://mathworld.wolfram.com/RegularizedHypergeometricFunction.html