TOPICS
Search

Pólya's Random Walk Constants


Let p(d) be the probability that a random walk on a d-D lattice returns to the origin. In 1921, Pólya proved that

p(1)=p(2)=1,
(1)

but

p(d)<1
(2)

for d>2. Watson (1939), McCrea and Whipple (1940), Domb (1954), and Glasser and Zucker (1977) showed that

(OEIS A086230), where

(OEIS A086231; Borwein and Bailey 2003, Ch. 2, Ex. 20) is the third of Watson's triple integrals modulo a multiplicative constant, K(k) is a complete elliptic integral of the first kind, theta_3(0,q) is a Jacobi theta function, and Gamma(z) is the gamma function.

Closed forms for d>3 are not known, but Montroll (1956) showed that for d>3,

p(d)=1-[u(d)]^(-1),
(10)

where

and I_0(z) is a modified Bessel function of the first kind.

Numerical values of p(d) from Montroll (1956) and Flajolet (Finch 2003) are given in the following table.

d OEIS p(d)
3 A086230 0.340537
4 A086232 0.193206
5 A086233 0.135178
6 A086234 0.104715
7 A086235 0.0858449
8 A086236 0.0729126

See also

Random Walk, Watson's Triple Integrals

Explore with Wolfram|Alpha

References

Borwein, J. and Bailey, D. Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A K Peters, 2003.Finch, S. R. "Pólya's Random Walk Constant." §5.9 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 322-331, 2003.Domb, C. "On Multiple Returns in the Random-Walk Problem." Proc. Cambridge Philos. Soc. 50, 586-591, 1954.Glasser, M. L. and Zucker, I. J. "Extended Watson Integrals for the Cubic Lattices." Proc. Nat. Acad. Sci. U.S.A. 74, 1800-1801, 1977.McCrea, W. H. and Whipple, F. J. W. "Random Paths in Two and Three Dimensions." Proc. Roy. Soc. Edinburgh 60, 281-298, 1940.Montroll, E. W. "Random Walks in Multidimensional Spaces, Especially on Periodic Lattices." J. SIAM 4, 241-260, 1956.Sloane, N. J. A. Sequences A086230, A086231, A086232, A086233, A086234, A086235, and A086236 in "The On-Line Encyclopedia of Integer Sequences."Watson, G. N. "Three Triple Integrals." Quart. J. Math., Oxford Ser. 2 10, 266-276, 1939.

Referenced on Wolfram|Alpha

Pólya's Random Walk Constants

Cite this as:

Weisstein, Eric W. "Pólya's Random Walk Constants." From MathWorld--A Wolfram Resource. https://mathworld.wolfram.com/PolyasRandomWalkConstants.html

Subject classifications

AltStyle によって変換されたページ (->オリジナル) /