[フレーム]
Skip to main content
Log in

Review of Quantum Mechanics

  • Chapter
  • First Online:

Part of the book series: Graduate Texts in Physics ((GTP))

Abstract

Atomic phenomena are described mainly on the basis of non-relativistic quantum mechanics. Relativistic effects can generally be accounted for in a satisfactory way with perturbative methods. In the 1990s it became increasingly apparent, that a better understanding of the classical dynamics of an atomic system can lead to a deeper appreciation of various features in its observable quantum mechanical properties, see e.g. [RW94, CK97, FE97, BB97, SS98, BR09], Sect. 5.3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
17,985円 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 10295
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12869
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 18589
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Notes

  1. 1.

    It is also common usage to express φ c in terms of the spherical Bessel functions of the second kind , y l (z) = −n l (z): φ c(kr) = −kr y l (kr), cf. (A.51) in Appendix A.4.

  2. 2.

    We use the term "momentum representation" when we write the wave functions as functions of momentum p or as functions of wave number k = pħ.

References

  1. G. Baym, Lectures on Quantum Mechanics (Benjamin, New York, 1969)

  2. M. Brack, R.K. Bhaduri, Semiclassical Physics (Addison-Wesley, Reading, 1997)

  3. C. Bracher, M. Kleber, Ann. Phys. (Leipzig) 4, 696 (1995)

  4. M.V. Berry, K.E. Mount, Semiclassical approximations in wave mechanics. Rep. Prog. Phys. 35, 315 (1972)

  5. R. Blümel, W.P. Reinhardt, Chaos in Atomic Physics (Cambridge University Press, Cambridge, 2009)

  6. L.S. Cederbaum, K.C. Kulander, N.H. March (eds.), Atoms and Molecules in Intense Fields. Structure and Bonding, vol. 86 (Springer, Berlin, 1997)

  7. C.A.A. de Carvalho, H.M. Nussenzveig, Phys. Reports 364, 83 (2002)

  8. A.R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University Press, Princeton, 1960)

  9. W. Elberfeld, M. Kleber, Am. J. Phys. 56, 154 (1988)

  10. H. Friedrich, B. Eckhardt (eds.), Classical, Semiclassical and Quantum Dynamics in Atoms. Lecture Notes in Physics, vol. 485 (Springer, Berlin, Heidelberg, New York, 1997)

  11. N. Fröman, P.O. Fröman, JWKB Approximation (North Holland, Amsterdam, 1965)

  12. N. Fröman, P.O. Fröman, Phase Integral Method. Springer Tracts in Modern Philosophy, vol. 40 (Springer, Berlin, Heidelberg, New York, 1996)

  13. H. Friedrich, J. Trost, Phys. Rev. Lett. 76 4869 (1996); Phys. Rev. A 54, 1136 (1996)

  14. H. Friedrich, J. Trost, Phys. Reports 397, 359 (2004)

  15. S. Gasiorowicz, Quantum Physics (Wiley, New York, 1974)

  16. M. Kleber, Phys. Reports 236, 331 (1994)

  17. L.D. Landau, E.M. Lifshitz, Classical Mechanics (Addison Wesley, Reading, 1958)

  18. A. Messiah, Quantum Mechanics, vol. 1 (North Holland, Amsterdam, 1970)

  19. P. Morse, H. Feshbach, Methods of Theoretical Physics, Part II (McGraw-Hill, New York, 1953)

  20. P.J. Mohr, D.B. Newell, B.N. Taylor, http://physics.nist.gov/cuu/Constants/index.html

  21. J.G. Muga, R. Sala Mayato, I.L. Egusqiza (eds.), Time in Quantum Mechanics. Lecture Notes in Physics, vol. 734 (Springer, Berlin, Heidelberg, 2008)

  22. R.G. Newton, Scattering Theory of Waves and Particles, 2nd edn. (Springer, Berlin, Heidelberg, New York, 1982)

  23. V.S. Olkhovsky, E. Recami, J. Jakiel, Phys. Reports 398, 133 (2004)

  24. M. Razavy, Quantum Theory of Tunneling (World Scientific, Singapore, 2003)

  25. H. Ruder, G. Wunner, H. Herold, F. Geyer, Atoms in Strong Magnetic Fields (Springer, Heidelberg, 1994)

  26. L.I. Schiff, Quantum Mechanics (McGraw-Hill, New York, 1968)

  27. F. Schwabl, Quantum Mechanics, 3rd edn. (Springer, Berlin, Heidelberg, New York, 2002)

  28. P. Schmelcher, W. Schweizer (eds.), Atoms and Molecules in Strong External Fields. In: Proceedings of the 172nd WE-Heraeus Seminar (Bad Honnef, 1997) (Plenum Publishing, New York, 1998)

  29. M. Tinkham, Group Theory and Quantum Mechanics (McGraw-Hill, New York, 1964)

  30. E.P. Wigner, Phys. Rev. 98, 145 (1955)

Download references

Author information

Authors and Affiliations

  1. Fachbereich Physik T 30, TU München, Garching, Germany

    Harald Friedrich

Authors
  1. Harald Friedrich

    You can also search for this author in PubMed Google Scholar

About this chapter

Cite this chapter

Friedrich, H. (2017). Review of Quantum Mechanics. In: Theoretical Atomic Physics. Graduate Texts in Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-47769-5_1

Download citation

Publish with us

AltStyle によって変換されたページ (->オリジナル) /