-
541 Accesses
-
2 Citations
Abstract
Recent results in exoclimatology suggest that double-star systems are capable of hosting habitable worlds. The presence of a second source of radiation as well as additional gravitational interactions can influence the location and extent of circumstellar and circumbinary habitable zones, however. In this chapter, several concepts such as isophote-based, radiative, and dynamically informed habitable zones are revisited. They help reveal where terrestrial planets can retain liquid water in such environments. Combining orbital dynamics with simple climate models we demonstrate that the size of circumstellar habitable zones depends on a planet’s climate inertia. The higher a climate’s resilience to variations in the incident light, the higher the chances for planets to remain in a habitable state. In systems like α Centauri, a low climate inertia shrinks the habitable zone by 50%. For circumbinary planets the mass-ratio of the stars and their distance to the habitable zone determine the impact of climate inertia on planetary habitability. Systems with similar stellar components akin to Kepler-35 turn out to be excellent places to search for potentially habitable worlds.
This is a preview of subscription content, log in via an institution to check access.
Similar content being viewed by others
Habitability of Planets in Binary Star Systems
The Habitable Zone: The Climatic Limits of Habitability
Climate variations on Earth-like circumbinary planets
Explore related subjects
Discover the latest articles, books and news in related subjects, suggested using machine learning.References
Andrade-Ines E, Eggl S (2017) Secular orbit evolution in systems with a strong external perturber – a simple and accurate model. Astron J 153(4):148
Andrade-Ines E, Beaugé C, Michtchenko T, Robutel P (2016) Secular dynamics of S-type planetary orbits in binary star systems: applicability domains of first-and second-order theories. Celest Mech Dyn Astron 124(4):405–432
Backer DC (1993) A pulsar timing tutorial and NRAO Green Bank observations of PSR 1257+12. In: Phillips JA, Thorsett SE, Kulkarni SR (eds) Planets around pulsars. Astronomical Society of the Pacific conference series, vol 36. Astronomical Society of the Pacific, pp 11–18. http://www.aspbooks.org/
Bazsó Á, Pilat-Lohinger E, Eggl S et al (2016) Dynamics and habitability in circumstellar planetary systems of known binary stars. Mon Not R Astron Soc. https://doi.org/10.1093/mnras/stw3095
Bolmont E, Libert A-S, Leconte J, Selsis F (2016) Habitability of planets on eccentric orbits: limits of the mean flux approximation. Astron Astrophys 591:A106. https://doi.org/10.1051/0004-6361/201628073
Cuntz M (2013) S-type and P-type habitability in stellar binary systems: a comprehensive approach. I. Method and applications. Astrophys J 780(1):14
Cuntz M (2014) S-type and P-type habitability in stellar binary systems: a comprehensive approach. I. Method and applications. ApJ 780:14
Doolin S, Blundell KM (2011) The dynamics and stability of circumbinary orbits. MNRAS 418:2656–2668
Dressing CD, Spiegel DS, Scharf CA, Menou K, Raymond SN (2010) Habitable climates: the influence of eccentricity. ApJ 721:1295–1307
Dvorak R (1982) Planetary orbits in double star systems. Oesterreichische Akademie Wissenschaften Mathematisch naturwissenschaftliche Klasse Sitzungsberichte Abteilung 191: 423–437
Dvorak R (1986) Critical orbits in the elliptic restricted three-body problem. A&A 167:379–386
Eggl S, Pilat-Lohinger E, Georgakarakos N, Gyergyovits M, Funk B (2012) An analytic method to determine habitable zones for S-type planetary orbits in binary star systems. ApJ 752:74
Endl M, Bergmann C, Hearnshaw J et al (2015) The Mt John University observatory search for earth-mass planets in the habitable zone of α centauri. Int J Astrobiol 14(02):305–312
Forgan D (2013) Assessing circumbinary habitable zones using latitudinal energy balance modelling. Mon Not R Astron Soc. https://doi.org/10.1093/mnras/stt1964
Forgan D (2016) Milankovitch cycles of terrestrial planets in binary star systems. Mon Not R Astron Soc 463(3):2768–2780
Forgan DH, Mead A, Cockell CS, Raven JA (2015) Surface flux patterns on planets in circumbinary systems and potential for photosynthesis. Int J Astrobiol 14(03):465–478
Georgakarakos N (2003) Eccentricity evolution in hierarchical triple systems with eccentric outer binaries. MNRAS 345:340–348
Georgakarakos N (2013) The dependence of the stability of hierarchical triple systems on the orbital inclination. New Astron 23:41–48
Georgakarakos N, Eggl S (2015) Analytic orbit propagation for transiting circumbinary planets. Astrophys J 802(2):94
Godolt M, Grenfell JL, Kitzmann D et al (2016) Assessing the habitability of planets with Earth-like atmospheres with 1D and 3D climate modeling. A&A 592:A36
Haghighipour N, Kaltenegger L (2013) Calculating the habitable zone of binary star systems. II. P-type binaries. Astrophys J 777(2):166
Harrington RS (1977) Planetary orbits in binary stars. AJ 82:753–756
Hatzes AP, Cochran WD, Endl M et al (2003) A planetary companion to γ Cephei A. ApJ 599:1383–1394
Heppenheimer TA (1978) On the formation of planets in binary star systems. A&A 65:421–426
Holman MJ, Wiegert PA (1999) Long-term stability of planets in binary systems. AJ 117:621–628
Huang SS (1959) Occurrence of life in the universe. PASP 47:397–402
Huang SS (1960) Life-supporting regions in the vicinity of binary systems. PASP 72:106
Jaime LG, Pichardo B, Aguilar L (2012) Regions of dynamical stability for discs and planets in binary stars of the solar neighbourhood. Mon Not R Astron Soc 427(4):2723–2733
Kaltenegger L, Haghighipour N (2013) Calculating the habitable zone of binary star systems. I. S-type binaries. Astrophys J 777(2):165
Kane SR, Hinkel NR (2013) On the habitable zones of circumbinary planetary systems. ApJ 762:7
Kasting JF, Whitmire DP, Reynolds RT (1993) Habitable zones around main sequence stars. Icarus 101:108–128
Kervella P, Thévenin F, Ségransan D et al (2003) The diameters of alpha Centauri A and B. A comparison of the asteroseismic and VINCI/VLTI views. A&A 404:1087–1097
Kopparapu RK, Ramirez R, Kasting JF et al (2013) Habitable zones around main-sequence stars: new estimates. ApJ 765:131
Kopparapu RK, Ramirez RM, SchottelKotte J et al (2014) Habitable zones around main-sequence stars: dependence on planetary mass. Astrophys J Lett 787(2):L29
Kostov VB, McCullough PR, Carter JA et al (2014) Kepler-413b: a slightly misaligned, neptune-size transiting circumbinary planet. Astrophys J 784(1):14
Leung GCK, Lee MH (2013) An analytic theory for the orbits of circumbinary planets. ApJ 763:107
Ludwig W, Eggl S, Neubauer D et al (2016) Effective stellar flux calculations for limits of life-supporting zones of exoplanets. Mon Not R Astron Soc 458(4):3752–3759
Mardling RA (2007) Long-term tidal evolution of short-period planets with companions. Mon Not R Astron Soc 382(4):1768–1790
Mardling RA, Aarseth SJ (2001) Tidal interactions in star cluster simulations. MNRAS 321: 398–420
Mayor M, Udry S, Naef D et al (2004) The CORALIE survey for southern extra-solar planets. XII. Orbital solutions for 16 extra-solar planets discovered with CORALIE. A&A 415:391–402
Moriwaki K, Nakagawa Y (2004) A planetesimal accretion zone in a circumbinary disk. Astrophys J 609(2):1065. http://stacks.iop.org/0004-637X/609/i=2/a=1065
Müller TW, Haghighipour N (2014) Calculating the habitable zones of multiple star systems with a new interactive web site. Astrophys J 782(1):26
Pichardo B, Sparke LS, Aguilar LA (2005) Circumstellar and circumbinary discs in eccentric stellar binaries. MNRAS 359:521–530
Pilat-Lohinger E, Dvorak R (2002) Stability of S-type orbits in binaries. Celest Mech Dyn Astron 82:143–153
Pilat-Lohinger E, Funk B, Dvorak R (2003) Stability limits in double stars. A study of inclined planetary orbits. A&A 400:1085–1094
Popp M, Eggl S (2017) Climate variations on earth-like circumbinary planets. Nat Commun 8:14957 EP. http://dx.doi.org/10.1038/ncomms14957
Rabl G, Dvorak R (1988) Satellite-type planetary orbits in double stars – a numerical approach. A&A 191:385–391
Silsbee K, Rafikov RR (2014) Planet formation in binaries: dynamics of planetesimals perturbed by the eccentric protoplanetary disk and the secondary. Astrophys J 798(2):71
Spiegel DS, Raymond S, Dressing CD et al (2010) General Milankovitch cycles. In: Coudé Du Foresto V, Gelino DM, Ribas I (eds) Pathways towards habitable planets. Astronomical Society of the Pacific conference series, vol 430. Astronomical Society of the Pacific, p 109. http://www.aspbooks.org/
Thévenin F, Provost J, Morel P et al (2002) Asteroseismology and calibration of alpha Cen binary system. A&A 392:L9–L12
Tokovinin A (2014) From binaries to multiples. II. Hierarchical multiplicity of f and g dwarfs. Astron J 147(4):87. http://stacks.iop.org/1538-3881/147/i=4/a=87
Wang Z, Cuntz M (2017) Fitting formulae and constraints for the existence of S-type and P-type habitable zones in binary systems. Astron J 154(157):1–13
Welsh WF, Orosz JA, Carter JA et al (2012) Transiting circumbinary planets Kepler-34 b and Kepler-35 b. Nature 481(7382):475–479
Whitmire DP, Matese JJ, Criswell L, Mikkola S (1998) Habitable planet formation in binary star systems. Icarus 132:196–203
Williams DM, Pollard D (2002) Earth-like worlds on eccentric orbits: excursions beyond the habitable zone. Int J Astrobiol 1:61–69
Zombeck MV (2006) Handbook of space astronomy and astrophysics. Cambridge University, Cambridge
Editor information
Editors and Affiliations
Instituto de Astrofísica de Canarias , La Laguna, Spain
Hans J. Deeg
Instituto de Astrofísica de Canarias, La Laguna, Spain
Juan Antonio Belmonte
Section Editor information
Astronomy Department, University of Washington, Seattle, USA
Victoria Meadows
Astronomy Department, University of Washington, Box 351580, 98195, Seattle, WA, USA
Rory Barnes
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG (outside the USA)
About this entry
Cite this entry
Eggl, S. (2018). Habitability of Planets in Binary Star Systems. In: Deeg, H., Belmonte, J. (eds) Handbook of Exoplanets . Springer, Cham. https://doi.org/10.1007/978-3-319-30648-3_61-1
Download citation
DOI: https://doi.org/10.1007/978-3-319-30648-3_61-1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-30648-3
Online ISBN: 978-3-319-30648-3
eBook Packages: Living Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics