Skip to main content
Log in

Geometric Computational Electrodynamics with Variational Integrators and Discrete Differential Forms

  • Chapter

Part of the book series: Fields Institute Communications ((FIC,volume 73))

Abstract

In this paper, we develop a structure-preserving discretization of the Lagrangian framework for electrodynamics, combining the techniques of variational integrators and discrete differential forms. This leads to a general family of variational, multisymplectic numerical methods for solving Maxwell’s equations that automatically preserve key symmetries and invariants. In doing so, we show that Yee’s finite-difference time-domain (FDTD) scheme and its variants are multisymplectic and derive from a discrete Lagrangian variational principle. We also generalize the Yee scheme to unstructured meshes, not just in space but in 4-dimensional spacetime, which relaxes the need to take uniform time steps or even to have a preferred time coordinate. Finally, as an example of the type of methods that can be developed within this general framework, we introduce a new asynchronous variational integrator (AVI) for solving Maxwell’s equations. These results are illustrated with some prototype simulations that show excellent numerical behavior and absence of spurious modes, even for an irregular mesh with asynchronous time stepping.

In memory of Jerry, our colleague, mentor, and friend.

— A.S., Y.T., and M.D.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from 17,985円 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 14299
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

Discover the latest articles, books and news in related subjects, suggested using machine learning.

References

  1. Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus, homological techniques, and applications. Acta Numer. 15, 1–155 (2006). doi:10.1017/S0962492906210018

  2. Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus: from Hodge theory to numerical stability. Bull. Am. Math. Soc. (N.S.) 47(2), 281–354 (2010). doi:10.1090/S0273-0979年10月01日278-4

  3. Auchmann, B., Kurz, S.: A geometrically defined discrete Hodge operator on simplicial cells. IEEE Trans. Magn. 42(4), 643–646 (2006). doi:10.1109/TMAG.2006.870932

  4. Bell, N., Hirani, A.N.: PyDEC: software and algorithms for discretization of exterior calculus. ACM Trans. Math. Softw. 39(1), 3:1–3:41 (2012). doi:10.1145/2382585.2382588

  5. Bossavit, A.: Computational Electromagnetism: Variational Formulations, Complementarity, Edge Elements. Academic, San Diego (1998)

  6. Bossavit, A., Kettunen, L.: Yee-like schemes on a tetrahedral mesh, with diagonal lumping. Int. J. Numer. Modell. 12(1–2), 129–142 (1999). doi:10.1002/(SICI)1099-1204(199901/04)12:1/2<129::AID-JNM327>3.0.CO;2-G

  7. Bossavit, A., Kettunen, L.: Yee-like schemes on staggered cellular grids: a synthesis between FIT and FEM approaches. IEEE Trans. Magn. 36(4), 861–867 (2000). doi:10.1109/20.877580

  8. Clemens, M., Weiland, T.: Magnetic field simulation using conformal FIT formulations. IEEE Trans. Magn. 38(2), 389–392 (2002). doi:10.1109/20.996104

  9. Desbrun, M., Hirani, A.N., Marsden, J.E.: Discrete exterior calculus for variational problems in computer vision and graphics. In: Proceedings of the 42nd IEEE Conference on Decision and Control (CDC), vol. 5, pp. 4902–4907. IEEE Press, Washington (2003). doi:10.1109/CDC.2003.1272393

  10. Desbrun, M., Kanso, E., Tong, Y.: Discrete differential forms for computational modeling. In: Discrete Differential Geometry, Oberwolfach Semin., vol. 38, pp. 287–324. Birkhäuser, Basel (2008). doi:10.1007/978-3-7643-8621-4_16

  11. Elcott, S., Schröder, P.: Building your own DEC at home. In: ACM SIGGRAPH 2006 Courses, SIGGRAPH ’06, pp. 55–59. ACM, New York (2006). doi:10.1145/1185657.1185666

  12. Erickson, J., Guoy, D., Sullivan, J., Üngör, A.: Building spacetime meshes over arbitrary spatial domains. Eng. Comput. 20(4), 342–353 (2005). doi:10.1007/s00366-005-0303-0

  13. Gawlik, E.S., Mullen, P., Pavlov, D., Marsden, J.E., Desbrun, M.: Geometric, variational discretization of continuum theories. Physica D 240(21), 1724–1760 (2011). doi:10.1016/j.physd.2011年07月01日1

  14. Gotay, M.J., Isenberg, J., Marsden, J.E.: Momentum maps and classical relativistic fields. Part 1: covariant field theory (1997). arXiv:physics/9801019

  15. Gotay, M.J., Isenberg, J., Marsden, J.E.: Momentum maps and classical relativistic fields. Part II: canonical analysis of field theories (2004). arXiv:math-ph/0411032

  16. Gross, P.W., Kotiuga, P.R.: Electromagnetic Theory and Computation: A Topological Approach. Mathematical Sciences Research Institute Publications, vol. 48. Cambridge University Press, Cambridge (2004)

  17. Haber, E., Ascher, U.M.: Fast finite volume simulation of 3D electromagnetic problems with highly discontinuous coefficients. SIAM J. Sci. Comput. 22(6), 1943–1961 (2001). doi:10.1137/S1064827599360741

  18. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. Springer Series in Computational Mathematics, vol. 31, 2nd edn. Springer, Berlin (2006). doi:10.1007/3-540-30666-8

  19. Harrison, J.: Isomorphisms of differential forms and cochains. J. Geom. Anal. 8(5), 797–807 (1998). doi:10.1007/BF02922671. Dedicated to the memory of Fred Almgren

  20. Harrison, J.: Geometric Hodge star operator with applications to the theorems of Gauss and Green. Math. Proc. Camb. Philos. Soc. 140(1), 135–155 (2006). doi:10.1017/S0305004105008716

  21. Harrison, J., Pugh, H.: Topological aspects of differential chains. J. Geom. Anal. 22(3), 685–690 (2012). doi:10.1007/s12220-010-9210-8

  22. Hiptmair, R.: Discrete Hodge operators. Numer. Math. 90(2), 265–289 (2001). doi:10.1007/s002110100295

  23. Hirani, A.N.: Discrete exterior calculus. Ph.D. thesis, California Institute of Technology (2003). http://resolver.caltech.edu/CaltechETD:etd-05202003-095403

  24. Holst, M., Stern, A.: Geometric variational crimes: Hilbert complexes, finite element exterior calculus, and problems on hypersurfaces. Found. Comput. Math. 12(3), 263–293 (2012). doi:10.1007/s10208-012-9119-7

  25. Kale, K.G., Lew, A.J.: Parallel asynchronous variational integrators. Int. J. Numer. Methods Eng. 70(3), 291–321 (2007). doi:10.1002/nme.1880

  26. Leok, M.: Foundations of computational geometric mechanics. Ph.D. thesis, California Institute of Technology (2004). http://resolver.caltech.edu/CaltechETD:etd-03022004-000251

  27. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002)

  28. Lew, A., Marsden, J.E., Ortiz, M., West, M.: Asynchronous variational integrators. Arch. Ration. Mech. Anal. 167(2), 85–146 (2003). doi:10.1007/s00205-002-0212-y

  29. Lew, A., Marsden, J.E., Ortiz, M., West, M.: Variational time integrators. Int. J. Numer. Methods Eng. 60(1), 153–212 (2004). doi:10.1002/nme.958

  30. Marsden, J.E., West, M.: Discrete mechanics and variational integrators. Acta Numer. 10, 357–514 (2001). doi:10.1017/S096249290100006X

  31. Marsden, J.E., Patrick, G.W., Shkoller, S.: Multisymplectic geometry, variational integrators, and nonlinear PDEs. Commun. Math. Phys. 199(2), 351–395 (1998). doi:10.1007/s002200050505

  32. Marsden, J.E., Pekarsky, S., Shkoller, S., West, M.: Variational methods, multisymplectic geometry and continuum mechanics. J. Geom. Phys. 38(3-4), 253–284 (2001). doi:10.1016/S0393-0440(00)00066-8

  33. Mullen, P., Memari, P., de Goes, F., Desbrun, M.: HOT: Hodge-optimized triangulations. ACM Trans. Graph. 30(4), 103:1–103:12 (2011). doi:10.1145/2010324.1964998

  34. Nédélec, J.C.: Mixed finite elements in \(\mathbb{R}^{3}\). Numer. Math. 35(3), 315–341 (1980). doi:10.1007/BF01396415

  35. Oliver, M., West, M., Wulff, C.: Approximate momentum conservation for spatial semidiscretizations of semilinear wave equations. Numer. Math. 97(3), 493–535 (2004). doi:10.1007/s00211-003-0488-3

  36. O’Rourke, J.: Computational Geometry in C, 2nd edn. Cambridge University Press, Cambridge (1998)

  37. Patrick, G.W.: Geometric classical field theory. Personal communication (2004)

  38. Pavlov, D., Mullen, P., Tong, Y., Kanso, E., Marsden, J.E., Desbrun, M.: Structure-preserving discretization of incompressible fluids. Physica D 240(6), 443–458 (2011). doi:10.1016/j.physd.2010年10月01日2

  39. Rylander, T., Ingelström, P., Bondeson, A.: Computational Electromagnetics. Texts in Applied Mathematics, vol. 51, 2nd edn. Springer, New York (2013). doi:10.1007/978-1-4614-5351-2

  40. Stern, A.: Geometric discretization of Lagrangian mechanics and field theories. Ph.D. thesis, California Institute of Technology (2009). http://resolver.caltech.edu/CaltechETD:etd-12312008-173851

  41. Taflove, A., Hagness, S.C.: Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd edn. Artech House Inc., Boston (2005)

  42. Tarhasaari, T., Kettunen, L., Bossavit, A.: Some realizations of a discrete Hodge operator: a reinterpretation of finite element techniques. IEEE Trans. Magn. 35(3), 1494–1497 (1999). doi:10.1109/20.767250

  43. Thite, S.: Spacetime meshing for discontinuous Galerkin methods. Ph.D. thesis, University of Illinois at Urbana-Champaign (2005). http://hdl.handle.net/2142/11078

  44. Thite, S.: Adaptive spacetime meshing for discontinuous Galerkin methods. Comput. Geom. 42(1), 20–44 (2009). doi:10.1016/j.comgeo.200807003

  45. Wang, K., Weiwei, Tong, Y., Desbrun, M., Schröder, P.: Edge subdivision schemes and the construction of smooth vector fields. ACM Trans. Graph. 25(3), 1041–1048 (2006). doi:10.1145/1141911.1141991

  46. Whitney, H.: Geometric Integration Theory. Princeton University Press, Princeton (1957)

  47. Wise, D.K.: p-form electromagnetism on discrete spacetimes. Class. Quantum Gravity 23(17), 5129–5176 (2006). doi:10.1088/0264-9381/23/17/004

  48. Yee, K.S.: Numerical solution of inital boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Ant. Prop. 14(3), 302–307 (1966). doi:10.1109/TAP.1966.1138693

  49. Yoshimura, H., Marsden, J.E.: Dirac structures in Lagrangian mechanics. II. Variational structures. J. Geom. Phys. 57(1), 209–250 (2006). doi:10.1016/j.geomphys.2006年02月01日2

Download references

Acknowledgements

We would like to thank several people for their inspiration and suggestions. First of all, Alain Bossavit for suggesting many years ago that we take the present DEC approach to computational electrodynamics, and for his excellent lectures at Caltech on the subject. Second, Michael Ortiz and Eva Kanso for their ongoing interactions on related topics and suggestions. We also thank Doug Arnold, Uri Ascher, Robert Kotiuga, Melvin Leok, Adrian Lew, and Matt West for their feedback and encouragement. In addition, the 3-D AVI simulations shown in Figure 11 were programmed and implemented by Patrick Xia, as part of a Summer Undergraduate Research Fellowship at Caltech supervised by M.D. and A.S.

A.S. was partially supported by a Gordon and Betty Moore Foundation fellowship at Caltech, and by NSF grant CCF-0528101. Y.T. and M.D. were partially supported by NSF grants CCR-0133983 and DMS-0453145 and DOE contract DE-FG02-04ER25657. J.E.M. was partially supported by NSF grant CCF-0528101.

Author information

Authors and Affiliations

  1. Department of Mathematics, Washington University, St. Louis, MO, 63130, USA

    Ari Stern

  2. Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA

    Yiying Tong

  3. Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, 91125, USA

    Mathieu Desbrun

  4. California Institute of Technology, Pasadena, CA, 91125, USA

    Jerrold E. Marsden

Authors
  1. Ari Stern
  2. Yiying Tong
  3. Mathieu Desbrun
  4. Jerrold E. Marsden

Corresponding author

Correspondence to Ari Stern .

Editor information

Editors and Affiliations

  1. Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada

    Dong Eui Chang

  2. Department of Mathematics, Imperial College London, London, United Kingdom

    Darryl D. Holm

  3. Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon, Saskatchewan, Canada

    George Patrick

  4. Section de Mathématiques, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

    Tudor Ratiu

About this chapter

Cite this chapter

Stern, A., Tong, Y., Desbrun, M., Marsden, J.E. (2015). Geometric Computational Electrodynamics with Variational Integrators and Discrete Differential Forms. In: Chang, D., Holm, D., Patrick, G., Ratiu, T. (eds) Geometry, Mechanics, and Dynamics. Fields Institute Communications, vol 73. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2441-7_19

Download citation

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Publish with us

AltStyle によって変換されたページ (->オリジナル) /