[画像:uptime_setup_512kb_eeprom_header]During my minimalistic solar powered datalogging project (here, here and here) I was at the point where I had more data than could be stored in my 32KB EEPROM. It was time to have more! As I already had the 24AA256 (32KB) from Microchip because of the wide supply voltage range and the low power consumption I looked for the biggest one of this series: The 24AA1025 is a 128KB EEPROM! It’s pins A0 and A1 can be used to address more than one chip. So there is a maximum of four chips giving you a total of 512KB EEPROM for your ATmega328P. This post describes the hardware setup (easy) and the software side. In the end we have a 512KB EEPROM memory with linear address range. Continue reading →
[画像:atmega_capacitors_pv_7]This is the next step forward In my “minimalistic standalone ATmega328 powered by a capacitor”. In this project I was walking from the start through first tests, reducing consumption, optimized tests and adding a RTC including the problems of waking up from sleep via interrupt. Then I added a 24AA256 EEPROM as external memory. EEPROMs are good for data storage as they keep data even when supply voltage has gone down. But they are slow, especially in write mode. This means that a lot of time is spent by simply writing two bytes of data into this memory and thus, energy is consumed during this time. Now with the 24AA256 it is possible to write up to 64 bytes at once. This is called “block mode”. Let’s look if we can reduce energy consumption furthermore by using this feature. Continue reading →
[画像:atmega_capacitors_pv_6]In my “minimalistic standalone ATmega328 powered by a capacitor” project I was walking from the start through first tests, reducing consumption, optimized tests and adding a RTC. The RTC has let me learn a lot about waking up from sleep via interrupt.
Now one more component is due to come: external EEPROM to extend data memory. As I’m hoping to extend total uptime more I probably will run out of EEPROM memory when keeping the basic example (reading one ADC channel once a second and writing data to EEPROM). Furthermore, when it comes to practical use of the system, internal EEPROM is too small also.
[画像:atmega_capacitors_pv_5]There are already some posts about my testsystem, Arduino powered by a capacitor: The start, first tests, reducing consumption and optimized tests. With different power saving techniques power consumption could be reduced by a factor of around 300. Now let’s look how we can go further and come step by step to a system that can be used in real life.
The basic idea is a microcontroller system e. g. for datalogging of slowly changing signals like room temperature or solar irradiation. In these applications the controller is up for a very short time and then sleeps until the next event. In the basic tests with a standalone ATmega328P timing between two logging events was done by the internal watchdog timer. Now let’s try to improve this…
The library <avr/power.h> makes it easy to shut down all unneeded hardware of an ATmega controller.
The documentation of this library shows all available instructions and also on which controllers they are working. As I didn’t find this very readable I copied the table and deleted everything that doesn’t apply to the ATmega328P. Continue reading →
[画像:atmega_capacitors_pv_3]Now let’s put this all together. First we take the old setup from the first tests and set all digital I/Os to output and low and connect the analog inputs to GND. Surprisingly this doesn’t make a longer uptime. So obviously most of the electricity is consumed while sleeping. Continue reading →
atmega_capacitors_pv_2The first test showed that there is a lot of power reduction potential in having the controller sleep when it doesn’t have to do something. Now it’s time to look in detail to the possibilities of saving power both while the controller is running and during sleep. With simple test sketches measurements are done with different configurations to see the effects and to find out how low power consumption can be. Continue reading →