| Impact | Details |
|---|---|
|
Varies by Context |
Scope: Confidentiality
The consequences will depend on the information disclosed due to the vulnerability.
|
| Phase(s) | Mitigation |
|---|---|
|
Architecture and Design |
Every register potentially containing sensitive information must have a policy specifying how and when information is cleared, in addition to clarifying if it is the responsibility of the hardware logic or IP user to initiate the zeroization procedure at the appropriate time.
Note:
Unfortunately, data disclosure can occur even after information has been overwritten/zeroized from the digital perspective. Physical characteristics of the memory can reveal the history of previously written data. For example, if the same value is written repeatedly to a memory location, the corresponding memory cells can become physically altered to a degree that even if the original data is erased it can still be recovered through physical characterization of the memory cells [REF-1055].
|
| Nature | Type | ID | Name |
|---|---|---|---|
| ChildOf | Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. | 226 | Sensitive Information in Resource Not Removed Before Reuse |
| Nature | Type | ID | Name |
|---|---|---|---|
| ChildOf | Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. | 226 | Sensitive Information in Resource Not Removed Before Reuse |
| Phase | Note |
|---|---|
| Architecture and Design | Lack of hardware mechanisms to zeroize or clear registers in the design or specification. |
| Implementation | Mechanisms to zeroize and clear registers are in the design but implemented incorrectly. |
| Operation | Hardware-provided zeroization mechanisms are not used appropriately by the IP user (ex. firmware), or data remanence issues are not taken into account. |
Class: Not Language-Specific (Undetermined Prevalence)
Class: Not OS-Specific (Undetermined Prevalence)
Class: Not Architecture-Specific (Undetermined Prevalence)
Class: System on Chip (Undetermined Prevalence)
Example 1
Suppose a hardware IP for implementing an encryption routine works as expected, but it leaves the intermediate results in some registers that can be accessed. Exactly why this access happens is immaterial - it might be unintentional or intentional, where the designer wanted a "quick fix" for something.
Example 2
The example code below [REF-1379] is taken from the SHA256 Interface/wrapper controller module of the HACK@DAC'21 buggy OpenPiton SoC. Within the wrapper module there are a set of 16 memory-mapped registers referenced data[0] to data[15]. These registers are 32 bits in size and are used to store the data received on the AXI Lite interface for hashing. Once both the message to be hashed and a request to start the hash computation are received, the values of these registers will be forwarded to the underlying SHA256 module for processing. Once forwarded, the values in these registers no longer need to be retained. In fact, if not cleared or overwritten, these sensitive values can be read over the AXI Lite interface, potentially compromising any previously confidential data stored therein.
In the previous code snippet [REF-1379] there is the lack of a data clearance mechanism for the memory-mapped I/O registers after their utilization. These registers get cleared only when a reset condition is met. This condition is met when either the global negative-edge reset input signal (rst_ni) or the dedicated reset input signal for SHA256 peripheral (rst_3) is active. In other words, if either of these reset signals is true, the registers will be cleared. However, in cases where there is not a reset condition these registers retain their values until the next hash operation. It is during the time between an old hash operation and a new hash operation that that data is open to unauthorized disclosure.
To correct the issue of data persisting between hash operations, the memory mapped I/O registers need to be cleared once the values written in these registers are propagated to the SHA256 module. This could be done for example by adding a new condition to zeroize the memory mapped I/O registers once the hash value is computed, i.e., hashValid signal asserted, as shown in the good code example below [REF-1380]. This fix will clear the memory-mapped I/O registers after the data has been provided as input to the SHA engine.
| Nature | Type | ID | Name |
|---|---|---|---|
| MemberOf | CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. | 1416 | Comprehensive Categorization: Resource Lifecycle Management |
Rationale
This CWE entry is at the Variant level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.Comments
Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.| Submissions | ||
|---|---|---|
| Submission Date | Submitter | Organization |
|
2020年02月08日
(CWE 4.0, 2020年02月24日) |
Nicole Fern | Cycuity (originally submitted as Tortuga Logic) |
| Contributions | ||
| Contribution Date | Contributor | Organization |
| 2023年11月07日 | Chen Chen, Rahul Kande, Jeyavijayan Rajendran | Texas A&M University |
| suggested demonstrative example | ||
| 2023年11月07日 | Shaza Zeitouni, Mohamadreza Rostami, Ahmad-Reza Sadeghi | Technical University of Darmstadt |
| suggested demonstrative example | ||
| Modifications | ||
| Modification Date | Modifier | Organization |
|
2025年09月09日
(CWE 4.18, 2025年09月09日) |
CWE Content Team | MITRE |
| updated References | ||
|
2024年02月29日
(CWE 4.14, 2024年02月29日) |
CWE Content Team | MITRE |
| updated Demonstrative_Examples, References | ||
| 2023年06月29日 | CWE Content Team | MITRE |
| updated Mapping_Notes | ||
| 2023年04月27日 | CWE Content Team | MITRE |
| updated References, Relationships | ||
| 2021年10月28日 | CWE Content Team | MITRE |
| updated Relationships | ||
| 2020年08月20日 | CWE Content Team | MITRE |
| updated Related_Attack_Patterns | ||
Use of the Common Weakness Enumeration (CWE™) and the associated references from this website are subject to the Terms of Use. CWE is sponsored by the U.S. Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency (CISA) and managed by the Homeland Security Systems Engineering and Development Institute (HSSEDI) which is operated by The MITRE Corporation (MITRE). Copyright © 2006–2025, The MITRE Corporation. CWE, CWSS, CWRAF, and the CWE logo are trademarks of The MITRE Corporation.