Facilitate tasks typically encountered during metabolomics data analysis including data import, filtering, missing value imputation (Stacklies et al. (2007) <doi:10.1093/bioinformatics/btm069>, Stekhoven et al. (2012) <doi:10.1093/bioinformatics/btr597>, Tibshirani et al. (2017) <doi:10.18129/B9.BIOC.IMPUTE>, Troyanskaya et al. (2001) <doi:10.1093/bioinformatics/17.6.520>), normalization (Bolstad et al. (2003) <doi:10.1093/bioinformatics/19.2.185>, Dieterle et al. (2006) <doi:10.1021/ac051632c>, Zhao et al. (2020) <doi:10.1038/s41598-020-72664-6>) transformation, centering and scaling (Van Den Berg et al. (2006) <doi:10.1186/1471-2164年7月14日2>) as well as statistical tests and plotting. 'metamorphr' introduces a tidy (Wickham et al. (2019) <doi:10.21105/joss.01686>) format for metabolomics data and is designed to make it easier to build elaborate analysis workflows and to integrate them with 'tidyverse' packages including 'dplyr' and 'ggplot2'.
Please use the canonical form https://CRAN.R-project.org/package=metamorphr to link to this page.