WGCNA: Weighted Correlation Network Analysis
Functions necessary to perform Weighted Correlation Network Analysis on high-dimensional data as originally described in Horvath and Zhang (2005) <doi:10.2202/1544-6115.1128> and Langfelder and Horvath (2008) <doi:10.1186/1471-2105-9-559>. Includes functions for rudimentary data cleaning, construction of correlation networks, module identification, summarization, and relating of variables and modules to sample traits. Also includes a number of utility functions for data manipulation and visualization.
Version:
1.73
Imports:
stats, grDevices, utils,
matrixStats (≥ 0.8.1),
Hmisc,
impute, splines,
foreach,
doParallel,
preprocessCore,
survival, parallel,
GO.db,
AnnotationDbi,
Rcpp (≥ 0.11.0)
Published:
2024年09月18日
Author:
Peter Langfelder [aut, cre],
Steve Horvath [aut],
Chaochao Cai [aut],
Jun Dong [aut],
Jeremy Miller [aut],
Lin Song [aut],
Andy Yip [aut],
Bin Zhang [aut]
Maintainer:
Peter Langfelder <Peter.Langfelder at gmail.com>
NeedsCompilation:
yes
Documentation:
Downloads:
Reverse dependencies:
Reverse imports:
BioM2,
BioNAR,
BioNERO,
CEMiTool,
csdR,
DiPALM,
DrDimont,
eclust,
fastLiquidAssociation,
FREEtree,
GmicR,
GWENA,
iModMix,
MCbiclust,
miRSM,
MODA,
MRPC,
multiWGCNA,
netboost,
Patterns,
ReducedExperiment,
RegEnrich,
scpoisson,
SPsimSeq,
TIN
Reverse suggests:
ADAPTS,
BioCor,
ClusterGVis,
cola,
corrselect,
DDPNA,
fuzzyforest,
GRaNIE,
gsean,
HiContacts,
maGUI,
scde,
scGPS,
scITD,
TRexSelector
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=WGCNA
to link to this page.